This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A word is equal with a length 3 string iff it has length 3 and the same symbol at each position. (Contributed by AV, 12-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqwrds3 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝑊 = 〈“ 𝐴 𝐵 𝐶 ”〉 ↔ ( ( ♯ ‘ 𝑊 ) = 3 ∧ ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 1 ) = 𝐵 ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | s3cl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ Word 𝑉 ) | |
| 2 | eqwrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 〈“ 𝐴 𝐵 𝐶 ”〉 ∈ Word 𝑉 ) → ( 𝑊 = 〈“ 𝐴 𝐵 𝐶 ”〉 ↔ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑖 ) ) ) ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝑊 = 〈“ 𝐴 𝐵 𝐶 ”〉 ↔ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑖 ) ) ) ) |
| 4 | s3len | ⊢ ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) = 3 | |
| 5 | 4 | eqeq2i | ⊢ ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) ↔ ( ♯ ‘ 𝑊 ) = 3 ) |
| 6 | 5 | a1i | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) ↔ ( ♯ ‘ 𝑊 ) = 3 ) ) |
| 7 | 6 | anbi1d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 〈“ 𝐴 𝐵 𝐶 ”〉 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑖 ) ) ↔ ( ( ♯ ‘ 𝑊 ) = 3 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑖 ) ) ) ) |
| 8 | oveq2 | ⊢ ( ( ♯ ‘ 𝑊 ) = 3 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ..^ 3 ) ) | |
| 9 | fzo0to3tp | ⊢ ( 0 ..^ 3 ) = { 0 , 1 , 2 } | |
| 10 | 8 9 | eqtrdi | ⊢ ( ( ♯ ‘ 𝑊 ) = 3 → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = { 0 , 1 , 2 } ) |
| 11 | 10 | raleqdv | ⊢ ( ( ♯ ‘ 𝑊 ) = 3 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑖 ) ↔ ∀ 𝑖 ∈ { 0 , 1 , 2 } ( 𝑊 ‘ 𝑖 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑖 ) ) ) |
| 12 | fveq2 | ⊢ ( 𝑖 = 0 → ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 0 ) ) | |
| 13 | fveq2 | ⊢ ( 𝑖 = 0 → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑖 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) ) | |
| 14 | 12 13 | eqeq12d | ⊢ ( 𝑖 = 0 → ( ( 𝑊 ‘ 𝑖 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑖 ) ↔ ( 𝑊 ‘ 0 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) ) ) |
| 15 | s3fv0 | ⊢ ( 𝐴 ∈ 𝑉 → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) = 𝐴 ) | |
| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) = 𝐴 ) |
| 17 | 16 | eqeq2d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( ( 𝑊 ‘ 0 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 0 ) ↔ ( 𝑊 ‘ 0 ) = 𝐴 ) ) |
| 18 | 14 17 | sylan9bbr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ 𝑖 = 0 ) → ( ( 𝑊 ‘ 𝑖 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑖 ) ↔ ( 𝑊 ‘ 0 ) = 𝐴 ) ) |
| 19 | fveq2 | ⊢ ( 𝑖 = 1 → ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 1 ) ) | |
| 20 | fveq2 | ⊢ ( 𝑖 = 1 → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑖 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) ) | |
| 21 | 19 20 | eqeq12d | ⊢ ( 𝑖 = 1 → ( ( 𝑊 ‘ 𝑖 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑖 ) ↔ ( 𝑊 ‘ 1 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) ) ) |
| 22 | s3fv1 | ⊢ ( 𝐵 ∈ 𝑉 → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) = 𝐵 ) | |
| 23 | 22 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) = 𝐵 ) |
| 24 | 23 | eqeq2d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( ( 𝑊 ‘ 1 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 1 ) ↔ ( 𝑊 ‘ 1 ) = 𝐵 ) ) |
| 25 | 21 24 | sylan9bbr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ 𝑖 = 1 ) → ( ( 𝑊 ‘ 𝑖 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑖 ) ↔ ( 𝑊 ‘ 1 ) = 𝐵 ) ) |
| 26 | fveq2 | ⊢ ( 𝑖 = 2 → ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ 2 ) ) | |
| 27 | fveq2 | ⊢ ( 𝑖 = 2 → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑖 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) ) | |
| 28 | 26 27 | eqeq12d | ⊢ ( 𝑖 = 2 → ( ( 𝑊 ‘ 𝑖 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑖 ) ↔ ( 𝑊 ‘ 2 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) ) ) |
| 29 | s3fv2 | ⊢ ( 𝐶 ∈ 𝑉 → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) = 𝐶 ) | |
| 30 | 29 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) = 𝐶 ) |
| 31 | 30 | eqeq2d | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( ( 𝑊 ‘ 2 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 2 ) ↔ ( 𝑊 ‘ 2 ) = 𝐶 ) ) |
| 32 | 28 31 | sylan9bbr | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ∧ 𝑖 = 2 ) → ( ( 𝑊 ‘ 𝑖 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑖 ) ↔ ( 𝑊 ‘ 2 ) = 𝐶 ) ) |
| 33 | 0zd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → 0 ∈ ℤ ) | |
| 34 | 1zzd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → 1 ∈ ℤ ) | |
| 35 | 2z | ⊢ 2 ∈ ℤ | |
| 36 | 35 | a1i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → 2 ∈ ℤ ) |
| 37 | 18 25 32 33 34 36 | raltpd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( ∀ 𝑖 ∈ { 0 , 1 , 2 } ( 𝑊 ‘ 𝑖 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑖 ) ↔ ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 1 ) = 𝐵 ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) ) ) |
| 38 | 37 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ∀ 𝑖 ∈ { 0 , 1 , 2 } ( 𝑊 ‘ 𝑖 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑖 ) ↔ ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 1 ) = 𝐵 ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) ) ) |
| 39 | 11 38 | sylan9bbr | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( ♯ ‘ 𝑊 ) = 3 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑖 ) ↔ ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 1 ) = 𝐵 ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) ) ) |
| 40 | 39 | pm5.32da | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( ( ♯ ‘ 𝑊 ) = 3 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 ‘ 𝑖 ) = ( 〈“ 𝐴 𝐵 𝐶 ”〉 ‘ 𝑖 ) ) ↔ ( ( ♯ ‘ 𝑊 ) = 3 ∧ ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 1 ) = 𝐵 ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) ) ) ) |
| 41 | 3 7 40 | 3bitrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝑊 = 〈“ 𝐴 𝐵 𝐶 ”〉 ↔ ( ( ♯ ‘ 𝑊 ) = 3 ∧ ( ( 𝑊 ‘ 0 ) = 𝐴 ∧ ( 𝑊 ‘ 1 ) = 𝐵 ∧ ( 𝑊 ‘ 2 ) = 𝐶 ) ) ) ) |