This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A total function is a partial function. (Contributed by NM, 15-Nov-2007) (Revised by Mario Carneiro, 31-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elmap.1 | ⊢ 𝐴 ∈ V | |
| elmap.2 | ⊢ 𝐵 ∈ V | ||
| Assertion | fpm | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 ∈ ( 𝐵 ↑pm 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmap.1 | ⊢ 𝐴 ∈ V | |
| 2 | elmap.2 | ⊢ 𝐵 ∈ V | |
| 3 | fpmg | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝐹 ∈ ( 𝐵 ↑pm 𝐴 ) ) | |
| 4 | 1 2 3 | mp3an12 | ⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 ∈ ( 𝐵 ↑pm 𝐴 ) ) |