This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for wlkp1 . (Contributed by AV, 6-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wlkp1.v | |- V = ( Vtx ` G ) |
|
| wlkp1.i | |- I = ( iEdg ` G ) |
||
| wlkp1.f | |- ( ph -> Fun I ) |
||
| wlkp1.a | |- ( ph -> I e. Fin ) |
||
| wlkp1.b | |- ( ph -> B e. W ) |
||
| wlkp1.c | |- ( ph -> C e. V ) |
||
| wlkp1.d | |- ( ph -> -. B e. dom I ) |
||
| wlkp1.w | |- ( ph -> F ( Walks ` G ) P ) |
||
| wlkp1.n | |- N = ( # ` F ) |
||
| wlkp1.e | |- ( ph -> E e. ( Edg ` G ) ) |
||
| wlkp1.x | |- ( ph -> { ( P ` N ) , C } C_ E ) |
||
| wlkp1.u | |- ( ph -> ( iEdg ` S ) = ( I u. { <. B , E >. } ) ) |
||
| wlkp1.h | |- H = ( F u. { <. N , B >. } ) |
||
| wlkp1.q | |- Q = ( P u. { <. ( N + 1 ) , C >. } ) |
||
| wlkp1.s | |- ( ph -> ( Vtx ` S ) = V ) |
||
| Assertion | wlkp1lem4 | |- ( ph -> ( S e. _V /\ H e. _V /\ Q e. _V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkp1.v | |- V = ( Vtx ` G ) |
|
| 2 | wlkp1.i | |- I = ( iEdg ` G ) |
|
| 3 | wlkp1.f | |- ( ph -> Fun I ) |
|
| 4 | wlkp1.a | |- ( ph -> I e. Fin ) |
|
| 5 | wlkp1.b | |- ( ph -> B e. W ) |
|
| 6 | wlkp1.c | |- ( ph -> C e. V ) |
|
| 7 | wlkp1.d | |- ( ph -> -. B e. dom I ) |
|
| 8 | wlkp1.w | |- ( ph -> F ( Walks ` G ) P ) |
|
| 9 | wlkp1.n | |- N = ( # ` F ) |
|
| 10 | wlkp1.e | |- ( ph -> E e. ( Edg ` G ) ) |
|
| 11 | wlkp1.x | |- ( ph -> { ( P ` N ) , C } C_ E ) |
|
| 12 | wlkp1.u | |- ( ph -> ( iEdg ` S ) = ( I u. { <. B , E >. } ) ) |
|
| 13 | wlkp1.h | |- H = ( F u. { <. N , B >. } ) |
|
| 14 | wlkp1.q | |- Q = ( P u. { <. ( N + 1 ) , C >. } ) |
|
| 15 | wlkp1.s | |- ( ph -> ( Vtx ` S ) = V ) |
|
| 16 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 17 | 16 | wlkf | |- ( F ( Walks ` G ) P -> F e. Word dom ( iEdg ` G ) ) |
| 18 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 19 | 18 | wlkp | |- ( F ( Walks ` G ) P -> P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) |
| 20 | 17 19 | jca | |- ( F ( Walks ` G ) P -> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) ) |
| 21 | 8 20 | syl | |- ( ph -> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) ) |
| 22 | 6 15 | eleqtrrd | |- ( ph -> C e. ( Vtx ` S ) ) |
| 23 | 22 | elfvexd | |- ( ph -> S e. _V ) |
| 24 | 23 | adantr | |- ( ( ph /\ ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) ) -> S e. _V ) |
| 25 | simprl | |- ( ( ph /\ ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) ) -> F e. Word dom ( iEdg ` G ) ) |
|
| 26 | snex | |- { <. N , B >. } e. _V |
|
| 27 | unexg | |- ( ( F e. Word dom ( iEdg ` G ) /\ { <. N , B >. } e. _V ) -> ( F u. { <. N , B >. } ) e. _V ) |
|
| 28 | 25 26 27 | sylancl | |- ( ( ph /\ ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) ) -> ( F u. { <. N , B >. } ) e. _V ) |
| 29 | 13 28 | eqeltrid | |- ( ( ph /\ ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) ) -> H e. _V ) |
| 30 | ovex | |- ( 0 ... ( # ` F ) ) e. _V |
|
| 31 | fvex | |- ( Vtx ` G ) e. _V |
|
| 32 | 30 31 | fpm | |- ( P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) -> P e. ( ( Vtx ` G ) ^pm ( 0 ... ( # ` F ) ) ) ) |
| 33 | 32 | ad2antll | |- ( ( ph /\ ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) ) -> P e. ( ( Vtx ` G ) ^pm ( 0 ... ( # ` F ) ) ) ) |
| 34 | snex | |- { <. ( N + 1 ) , C >. } e. _V |
|
| 35 | unexg | |- ( ( P e. ( ( Vtx ` G ) ^pm ( 0 ... ( # ` F ) ) ) /\ { <. ( N + 1 ) , C >. } e. _V ) -> ( P u. { <. ( N + 1 ) , C >. } ) e. _V ) |
|
| 36 | 33 34 35 | sylancl | |- ( ( ph /\ ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) ) -> ( P u. { <. ( N + 1 ) , C >. } ) e. _V ) |
| 37 | 14 36 | eqeltrid | |- ( ( ph /\ ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) ) -> Q e. _V ) |
| 38 | 24 29 37 | 3jca | |- ( ( ph /\ ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) ) -> ( S e. _V /\ H e. _V /\ Q e. _V ) ) |
| 39 | 21 38 | mpdan | |- ( ph -> ( S e. _V /\ H e. _V /\ Q e. _V ) ) |