This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A walk of length 1 from a vertex to itself is a loop. (Contributed by AV, 23-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wlkl1loop | ⊢ ( ( ( Fun ( iEdg ‘ 𝐺 ) ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) ∧ ( ( ♯ ‘ 𝐹 ) = 1 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) ) ) → { ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkv | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) | |
| 2 | simp3l | ⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( Fun ( iEdg ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝐹 ) = 1 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) ) ) ) → Fun ( iEdg ‘ 𝐺 ) ) | |
| 3 | simp2 | ⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( Fun ( iEdg ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝐹 ) = 1 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) ) ) ) → 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) | |
| 4 | c0ex | ⊢ 0 ∈ V | |
| 5 | 4 | snid | ⊢ 0 ∈ { 0 } |
| 6 | oveq2 | ⊢ ( ( ♯ ‘ 𝐹 ) = 1 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = ( 0 ..^ 1 ) ) | |
| 7 | fzo01 | ⊢ ( 0 ..^ 1 ) = { 0 } | |
| 8 | 6 7 | eqtrdi | ⊢ ( ( ♯ ‘ 𝐹 ) = 1 → ( 0 ..^ ( ♯ ‘ 𝐹 ) ) = { 0 } ) |
| 9 | 5 8 | eleqtrrid | ⊢ ( ( ♯ ‘ 𝐹 ) = 1 → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 10 | 9 | ad2antrl | ⊢ ( ( Fun ( iEdg ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝐹 ) = 1 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) ) ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 11 | 10 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( Fun ( iEdg ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝐹 ) = 1 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) ) ) ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
| 12 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 13 | 12 | iedginwlk | ⊢ ( ( Fun ( iEdg ‘ 𝐺 ) ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 0 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) ∈ ran ( iEdg ‘ 𝐺 ) ) |
| 14 | 2 3 11 13 | syl3anc | ⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( Fun ( iEdg ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝐹 ) = 1 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) ) ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) ∈ ran ( iEdg ‘ 𝐺 ) ) |
| 15 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 16 | 15 12 | iswlkg | ⊢ ( 𝐺 ∈ V → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ↔ ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) ) |
| 17 | 8 | raleqdv | ⊢ ( ( ♯ ‘ 𝐹 ) = 1 → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ ∀ 𝑘 ∈ { 0 } if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) ) |
| 18 | oveq1 | ⊢ ( 𝑘 = 0 → ( 𝑘 + 1 ) = ( 0 + 1 ) ) | |
| 19 | 0p1e1 | ⊢ ( 0 + 1 ) = 1 | |
| 20 | 18 19 | eqtrdi | ⊢ ( 𝑘 = 0 → ( 𝑘 + 1 ) = 1 ) |
| 21 | wkslem2 | ⊢ ( ( 𝑘 = 0 ∧ ( 𝑘 + 1 ) = 1 ) → ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ if- ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) } , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) ) ) ) | |
| 22 | 20 21 | mpdan | ⊢ ( 𝑘 = 0 → ( if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ if- ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) } , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) ) ) ) |
| 23 | 4 22 | ralsn | ⊢ ( ∀ 𝑘 ∈ { 0 } if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ if- ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) } , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) ) ) |
| 24 | 17 23 | bitrdi | ⊢ ( ( ♯ ‘ 𝐹 ) = 1 → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ if- ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) } , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) ) ) ) |
| 25 | 24 | ad2antrl | ⊢ ( ( Fun ( iEdg ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝐹 ) = 1 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ↔ if- ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) } , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) ) ) ) |
| 26 | ifptru | ⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) → ( if- ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) } , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) ) ↔ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) } ) ) | |
| 27 | 26 | biimpa | ⊢ ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) ∧ if- ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) } , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) ) ) → ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) } ) |
| 28 | 27 | eqcomd | ⊢ ( ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) ∧ if- ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) } , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) ) ) → { ( 𝑃 ‘ 0 ) } = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) ) |
| 29 | 28 | ex | ⊢ ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) → ( if- ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) } , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) ) → { ( 𝑃 ‘ 0 ) } = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) ) ) |
| 30 | 29 | ad2antll | ⊢ ( ( Fun ( iEdg ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝐹 ) = 1 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) ) ) → ( if- ( ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) = { ( 𝑃 ‘ 0 ) } , { ( 𝑃 ‘ 0 ) , ( 𝑃 ‘ 1 ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) ) → { ( 𝑃 ‘ 0 ) } = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) ) ) |
| 31 | 25 30 | sylbid | ⊢ ( ( Fun ( iEdg ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝐹 ) = 1 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) ) ) → ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → { ( 𝑃 ‘ 0 ) } = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) ) ) |
| 32 | 31 | com12 | ⊢ ( ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) → ( ( Fun ( iEdg ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝐹 ) = 1 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) ) ) → { ( 𝑃 ‘ 0 ) } = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) ) ) |
| 33 | 32 | 3ad2ant3 | ⊢ ( ( 𝐹 ∈ Word dom ( iEdg ‘ 𝐺 ) ∧ 𝑃 : ( 0 ... ( ♯ ‘ 𝐹 ) ) ⟶ ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑘 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) if- ( ( 𝑃 ‘ 𝑘 ) = ( 𝑃 ‘ ( 𝑘 + 1 ) ) , ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) = { ( 𝑃 ‘ 𝑘 ) } , { ( 𝑃 ‘ 𝑘 ) , ( 𝑃 ‘ ( 𝑘 + 1 ) ) } ⊆ ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 𝑘 ) ) ) ) → ( ( Fun ( iEdg ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝐹 ) = 1 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) ) ) → { ( 𝑃 ‘ 0 ) } = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) ) ) |
| 34 | 16 33 | biimtrdi | ⊢ ( 𝐺 ∈ V → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ( Fun ( iEdg ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝐹 ) = 1 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) ) ) → { ( 𝑃 ‘ 0 ) } = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) ) ) ) |
| 35 | 34 | 3imp | ⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( Fun ( iEdg ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝐹 ) = 1 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) ) ) ) → { ( 𝑃 ‘ 0 ) } = ( ( iEdg ‘ 𝐺 ) ‘ ( 𝐹 ‘ 0 ) ) ) |
| 36 | edgval | ⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) | |
| 37 | 36 | a1i | ⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( Fun ( iEdg ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝐹 ) = 1 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) ) ) ) → ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ) |
| 38 | 14 35 37 | 3eltr4d | ⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ ( Fun ( iEdg ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝐹 ) = 1 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) ) ) ) → { ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 39 | 38 | 3exp | ⊢ ( 𝐺 ∈ V → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ( Fun ( iEdg ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝐹 ) = 1 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) ) ) → { ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 40 | 39 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V ) → ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ( Fun ( iEdg ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝐹 ) = 1 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) ) ) → { ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 41 | 1 40 | mpcom | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( ( Fun ( iEdg ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝐹 ) = 1 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) ) ) → { ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 42 | 41 | expd | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → ( Fun ( iEdg ‘ 𝐺 ) → ( ( ( ♯ ‘ 𝐹 ) = 1 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) ) → { ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 43 | 42 | impcom | ⊢ ( ( Fun ( iEdg ‘ 𝐺 ) ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) → ( ( ( ♯ ‘ 𝐹 ) = 1 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) ) → { ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 44 | 43 | imp | ⊢ ( ( ( Fun ( iEdg ‘ 𝐺 ) ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ) ∧ ( ( ♯ ‘ 𝐹 ) = 1 ∧ ( 𝑃 ‘ 0 ) = ( 𝑃 ‘ 1 ) ) ) → { ( 𝑃 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |