This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for walks to substitute the index of the condition for vertices and edges in a walk. (Contributed by AV, 23-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wkslem2 | ⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝐴 + 1 ) = 𝐶 ) → ( if- ( ( 𝑃 ‘ 𝐴 ) = ( 𝑃 ‘ ( 𝐴 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝐴 ) ) = { ( 𝑃 ‘ 𝐴 ) } , { ( 𝑃 ‘ 𝐴 ) , ( 𝑃 ‘ ( 𝐴 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝐴 ) ) ) ↔ if- ( ( 𝑃 ‘ 𝐵 ) = ( 𝑃 ‘ 𝐶 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝐵 ) ) = { ( 𝑃 ‘ 𝐵 ) } , { ( 𝑃 ‘ 𝐵 ) , ( 𝑃 ‘ 𝐶 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝑃 ‘ 𝐴 ) = ( 𝑃 ‘ 𝐵 ) ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝐴 + 1 ) = 𝐶 ) → ( 𝑃 ‘ 𝐴 ) = ( 𝑃 ‘ 𝐵 ) ) |
| 3 | fveq2 | ⊢ ( ( 𝐴 + 1 ) = 𝐶 → ( 𝑃 ‘ ( 𝐴 + 1 ) ) = ( 𝑃 ‘ 𝐶 ) ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝐴 + 1 ) = 𝐶 ) → ( 𝑃 ‘ ( 𝐴 + 1 ) ) = ( 𝑃 ‘ 𝐶 ) ) |
| 5 | 2 4 | eqeq12d | ⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝐴 + 1 ) = 𝐶 ) → ( ( 𝑃 ‘ 𝐴 ) = ( 𝑃 ‘ ( 𝐴 + 1 ) ) ↔ ( 𝑃 ‘ 𝐵 ) = ( 𝑃 ‘ 𝐶 ) ) ) |
| 6 | 2fveq3 | ⊢ ( 𝐴 = 𝐵 → ( 𝐼 ‘ ( 𝐹 ‘ 𝐴 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝐵 ) ) ) | |
| 7 | 1 | sneqd | ⊢ ( 𝐴 = 𝐵 → { ( 𝑃 ‘ 𝐴 ) } = { ( 𝑃 ‘ 𝐵 ) } ) |
| 8 | 6 7 | eqeq12d | ⊢ ( 𝐴 = 𝐵 → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝐴 ) ) = { ( 𝑃 ‘ 𝐴 ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ 𝐵 ) ) = { ( 𝑃 ‘ 𝐵 ) } ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝐴 + 1 ) = 𝐶 ) → ( ( 𝐼 ‘ ( 𝐹 ‘ 𝐴 ) ) = { ( 𝑃 ‘ 𝐴 ) } ↔ ( 𝐼 ‘ ( 𝐹 ‘ 𝐵 ) ) = { ( 𝑃 ‘ 𝐵 ) } ) ) |
| 10 | 2 4 | preq12d | ⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝐴 + 1 ) = 𝐶 ) → { ( 𝑃 ‘ 𝐴 ) , ( 𝑃 ‘ ( 𝐴 + 1 ) ) } = { ( 𝑃 ‘ 𝐵 ) , ( 𝑃 ‘ 𝐶 ) } ) |
| 11 | 6 | adantr | ⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝐴 + 1 ) = 𝐶 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝐴 ) ) = ( 𝐼 ‘ ( 𝐹 ‘ 𝐵 ) ) ) |
| 12 | 10 11 | sseq12d | ⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝐴 + 1 ) = 𝐶 ) → ( { ( 𝑃 ‘ 𝐴 ) , ( 𝑃 ‘ ( 𝐴 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝐴 ) ) ↔ { ( 𝑃 ‘ 𝐵 ) , ( 𝑃 ‘ 𝐶 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) |
| 13 | 5 9 12 | ifpbi123d | ⊢ ( ( 𝐴 = 𝐵 ∧ ( 𝐴 + 1 ) = 𝐶 ) → ( if- ( ( 𝑃 ‘ 𝐴 ) = ( 𝑃 ‘ ( 𝐴 + 1 ) ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝐴 ) ) = { ( 𝑃 ‘ 𝐴 ) } , { ( 𝑃 ‘ 𝐴 ) , ( 𝑃 ‘ ( 𝐴 + 1 ) ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝐴 ) ) ) ↔ if- ( ( 𝑃 ‘ 𝐵 ) = ( 𝑃 ‘ 𝐶 ) , ( 𝐼 ‘ ( 𝐹 ‘ 𝐵 ) ) = { ( 𝑃 ‘ 𝐵 ) } , { ( 𝑃 ‘ 𝐵 ) , ( 𝑃 ‘ 𝐶 ) } ⊆ ( 𝐼 ‘ ( 𝐹 ‘ 𝐵 ) ) ) ) ) |