This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the edge function for an index of an edge within a walk is an edge. (Contributed by AV, 23-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | iedginwlk.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| Assertion | iedginwlk | ⊢ ( ( Fun 𝐼 ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ran 𝐼 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iedginwlk.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | simp1 | ⊢ ( ( Fun 𝐼 ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → Fun 𝐼 ) | |
| 3 | 1 | wlkf | ⊢ ( 𝐹 ( Walks ‘ 𝐺 ) 𝑃 → 𝐹 ∈ Word dom 𝐼 ) |
| 4 | 3 | 3ad2ant2 | ⊢ ( ( Fun 𝐼 ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝐹 ∈ Word dom 𝐼 ) |
| 5 | simp3 | ⊢ ( ( Fun 𝐼 ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | |
| 6 | wrdsymbcl | ⊢ ( ( 𝐹 ∈ Word dom 𝐼 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ‘ 𝑋 ) ∈ dom 𝐼 ) | |
| 7 | 4 5 6 | syl2anc | ⊢ ( ( Fun 𝐼 ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐹 ‘ 𝑋 ) ∈ dom 𝐼 ) |
| 8 | fvelrn | ⊢ ( ( Fun 𝐼 ∧ ( 𝐹 ‘ 𝑋 ) ∈ dom 𝐼 ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ran 𝐼 ) | |
| 9 | 2 7 8 | syl2anc | ⊢ ( ( Fun 𝐼 ∧ 𝐹 ( Walks ‘ 𝐺 ) 𝑃 ∧ 𝑋 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( 𝐼 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ran 𝐼 ) |