This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A walk of length 1 from a vertex to itself is a loop. (Contributed by AV, 23-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wlkl1loop | |- ( ( ( Fun ( iEdg ` G ) /\ F ( Walks ` G ) P ) /\ ( ( # ` F ) = 1 /\ ( P ` 0 ) = ( P ` 1 ) ) ) -> { ( P ` 0 ) } e. ( Edg ` G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wlkv | |- ( F ( Walks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) |
|
| 2 | simp3l | |- ( ( G e. _V /\ F ( Walks ` G ) P /\ ( Fun ( iEdg ` G ) /\ ( ( # ` F ) = 1 /\ ( P ` 0 ) = ( P ` 1 ) ) ) ) -> Fun ( iEdg ` G ) ) |
|
| 3 | simp2 | |- ( ( G e. _V /\ F ( Walks ` G ) P /\ ( Fun ( iEdg ` G ) /\ ( ( # ` F ) = 1 /\ ( P ` 0 ) = ( P ` 1 ) ) ) ) -> F ( Walks ` G ) P ) |
|
| 4 | c0ex | |- 0 e. _V |
|
| 5 | 4 | snid | |- 0 e. { 0 } |
| 6 | oveq2 | |- ( ( # ` F ) = 1 -> ( 0 ..^ ( # ` F ) ) = ( 0 ..^ 1 ) ) |
|
| 7 | fzo01 | |- ( 0 ..^ 1 ) = { 0 } |
|
| 8 | 6 7 | eqtrdi | |- ( ( # ` F ) = 1 -> ( 0 ..^ ( # ` F ) ) = { 0 } ) |
| 9 | 5 8 | eleqtrrid | |- ( ( # ` F ) = 1 -> 0 e. ( 0 ..^ ( # ` F ) ) ) |
| 10 | 9 | ad2antrl | |- ( ( Fun ( iEdg ` G ) /\ ( ( # ` F ) = 1 /\ ( P ` 0 ) = ( P ` 1 ) ) ) -> 0 e. ( 0 ..^ ( # ` F ) ) ) |
| 11 | 10 | 3ad2ant3 | |- ( ( G e. _V /\ F ( Walks ` G ) P /\ ( Fun ( iEdg ` G ) /\ ( ( # ` F ) = 1 /\ ( P ` 0 ) = ( P ` 1 ) ) ) ) -> 0 e. ( 0 ..^ ( # ` F ) ) ) |
| 12 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 13 | 12 | iedginwlk | |- ( ( Fun ( iEdg ` G ) /\ F ( Walks ` G ) P /\ 0 e. ( 0 ..^ ( # ` F ) ) ) -> ( ( iEdg ` G ) ` ( F ` 0 ) ) e. ran ( iEdg ` G ) ) |
| 14 | 2 3 11 13 | syl3anc | |- ( ( G e. _V /\ F ( Walks ` G ) P /\ ( Fun ( iEdg ` G ) /\ ( ( # ` F ) = 1 /\ ( P ` 0 ) = ( P ` 1 ) ) ) ) -> ( ( iEdg ` G ) ` ( F ` 0 ) ) e. ran ( iEdg ` G ) ) |
| 15 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 16 | 15 12 | iswlkg | |- ( G e. _V -> ( F ( Walks ` G ) P <-> ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) ) |
| 17 | 8 | raleqdv | |- ( ( # ` F ) = 1 -> ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) <-> A. k e. { 0 } if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) ) |
| 18 | oveq1 | |- ( k = 0 -> ( k + 1 ) = ( 0 + 1 ) ) |
|
| 19 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 20 | 18 19 | eqtrdi | |- ( k = 0 -> ( k + 1 ) = 1 ) |
| 21 | wkslem2 | |- ( ( k = 0 /\ ( k + 1 ) = 1 ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) <-> if- ( ( P ` 0 ) = ( P ` 1 ) , ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) } , { ( P ` 0 ) , ( P ` 1 ) } C_ ( ( iEdg ` G ) ` ( F ` 0 ) ) ) ) ) |
|
| 22 | 20 21 | mpdan | |- ( k = 0 -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) <-> if- ( ( P ` 0 ) = ( P ` 1 ) , ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) } , { ( P ` 0 ) , ( P ` 1 ) } C_ ( ( iEdg ` G ) ` ( F ` 0 ) ) ) ) ) |
| 23 | 4 22 | ralsn | |- ( A. k e. { 0 } if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) <-> if- ( ( P ` 0 ) = ( P ` 1 ) , ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) } , { ( P ` 0 ) , ( P ` 1 ) } C_ ( ( iEdg ` G ) ` ( F ` 0 ) ) ) ) |
| 24 | 17 23 | bitrdi | |- ( ( # ` F ) = 1 -> ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) <-> if- ( ( P ` 0 ) = ( P ` 1 ) , ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) } , { ( P ` 0 ) , ( P ` 1 ) } C_ ( ( iEdg ` G ) ` ( F ` 0 ) ) ) ) ) |
| 25 | 24 | ad2antrl | |- ( ( Fun ( iEdg ` G ) /\ ( ( # ` F ) = 1 /\ ( P ` 0 ) = ( P ` 1 ) ) ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) <-> if- ( ( P ` 0 ) = ( P ` 1 ) , ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) } , { ( P ` 0 ) , ( P ` 1 ) } C_ ( ( iEdg ` G ) ` ( F ` 0 ) ) ) ) ) |
| 26 | ifptru | |- ( ( P ` 0 ) = ( P ` 1 ) -> ( if- ( ( P ` 0 ) = ( P ` 1 ) , ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) } , { ( P ` 0 ) , ( P ` 1 ) } C_ ( ( iEdg ` G ) ` ( F ` 0 ) ) ) <-> ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) } ) ) |
|
| 27 | 26 | biimpa | |- ( ( ( P ` 0 ) = ( P ` 1 ) /\ if- ( ( P ` 0 ) = ( P ` 1 ) , ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) } , { ( P ` 0 ) , ( P ` 1 ) } C_ ( ( iEdg ` G ) ` ( F ` 0 ) ) ) ) -> ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) } ) |
| 28 | 27 | eqcomd | |- ( ( ( P ` 0 ) = ( P ` 1 ) /\ if- ( ( P ` 0 ) = ( P ` 1 ) , ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) } , { ( P ` 0 ) , ( P ` 1 ) } C_ ( ( iEdg ` G ) ` ( F ` 0 ) ) ) ) -> { ( P ` 0 ) } = ( ( iEdg ` G ) ` ( F ` 0 ) ) ) |
| 29 | 28 | ex | |- ( ( P ` 0 ) = ( P ` 1 ) -> ( if- ( ( P ` 0 ) = ( P ` 1 ) , ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) } , { ( P ` 0 ) , ( P ` 1 ) } C_ ( ( iEdg ` G ) ` ( F ` 0 ) ) ) -> { ( P ` 0 ) } = ( ( iEdg ` G ) ` ( F ` 0 ) ) ) ) |
| 30 | 29 | ad2antll | |- ( ( Fun ( iEdg ` G ) /\ ( ( # ` F ) = 1 /\ ( P ` 0 ) = ( P ` 1 ) ) ) -> ( if- ( ( P ` 0 ) = ( P ` 1 ) , ( ( iEdg ` G ) ` ( F ` 0 ) ) = { ( P ` 0 ) } , { ( P ` 0 ) , ( P ` 1 ) } C_ ( ( iEdg ` G ) ` ( F ` 0 ) ) ) -> { ( P ` 0 ) } = ( ( iEdg ` G ) ` ( F ` 0 ) ) ) ) |
| 31 | 25 30 | sylbid | |- ( ( Fun ( iEdg ` G ) /\ ( ( # ` F ) = 1 /\ ( P ` 0 ) = ( P ` 1 ) ) ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) -> { ( P ` 0 ) } = ( ( iEdg ` G ) ` ( F ` 0 ) ) ) ) |
| 32 | 31 | com12 | |- ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) -> ( ( Fun ( iEdg ` G ) /\ ( ( # ` F ) = 1 /\ ( P ` 0 ) = ( P ` 1 ) ) ) -> { ( P ` 0 ) } = ( ( iEdg ` G ) ` ( F ` 0 ) ) ) ) |
| 33 | 32 | 3ad2ant3 | |- ( ( F e. Word dom ( iEdg ` G ) /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( ( iEdg ` G ) ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( ( iEdg ` G ) ` ( F ` k ) ) ) ) -> ( ( Fun ( iEdg ` G ) /\ ( ( # ` F ) = 1 /\ ( P ` 0 ) = ( P ` 1 ) ) ) -> { ( P ` 0 ) } = ( ( iEdg ` G ) ` ( F ` 0 ) ) ) ) |
| 34 | 16 33 | biimtrdi | |- ( G e. _V -> ( F ( Walks ` G ) P -> ( ( Fun ( iEdg ` G ) /\ ( ( # ` F ) = 1 /\ ( P ` 0 ) = ( P ` 1 ) ) ) -> { ( P ` 0 ) } = ( ( iEdg ` G ) ` ( F ` 0 ) ) ) ) ) |
| 35 | 34 | 3imp | |- ( ( G e. _V /\ F ( Walks ` G ) P /\ ( Fun ( iEdg ` G ) /\ ( ( # ` F ) = 1 /\ ( P ` 0 ) = ( P ` 1 ) ) ) ) -> { ( P ` 0 ) } = ( ( iEdg ` G ) ` ( F ` 0 ) ) ) |
| 36 | edgval | |- ( Edg ` G ) = ran ( iEdg ` G ) |
|
| 37 | 36 | a1i | |- ( ( G e. _V /\ F ( Walks ` G ) P /\ ( Fun ( iEdg ` G ) /\ ( ( # ` F ) = 1 /\ ( P ` 0 ) = ( P ` 1 ) ) ) ) -> ( Edg ` G ) = ran ( iEdg ` G ) ) |
| 38 | 14 35 37 | 3eltr4d | |- ( ( G e. _V /\ F ( Walks ` G ) P /\ ( Fun ( iEdg ` G ) /\ ( ( # ` F ) = 1 /\ ( P ` 0 ) = ( P ` 1 ) ) ) ) -> { ( P ` 0 ) } e. ( Edg ` G ) ) |
| 39 | 38 | 3exp | |- ( G e. _V -> ( F ( Walks ` G ) P -> ( ( Fun ( iEdg ` G ) /\ ( ( # ` F ) = 1 /\ ( P ` 0 ) = ( P ` 1 ) ) ) -> { ( P ` 0 ) } e. ( Edg ` G ) ) ) ) |
| 40 | 39 | 3ad2ant1 | |- ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( F ( Walks ` G ) P -> ( ( Fun ( iEdg ` G ) /\ ( ( # ` F ) = 1 /\ ( P ` 0 ) = ( P ` 1 ) ) ) -> { ( P ` 0 ) } e. ( Edg ` G ) ) ) ) |
| 41 | 1 40 | mpcom | |- ( F ( Walks ` G ) P -> ( ( Fun ( iEdg ` G ) /\ ( ( # ` F ) = 1 /\ ( P ` 0 ) = ( P ` 1 ) ) ) -> { ( P ` 0 ) } e. ( Edg ` G ) ) ) |
| 42 | 41 | expd | |- ( F ( Walks ` G ) P -> ( Fun ( iEdg ` G ) -> ( ( ( # ` F ) = 1 /\ ( P ` 0 ) = ( P ` 1 ) ) -> { ( P ` 0 ) } e. ( Edg ` G ) ) ) ) |
| 43 | 42 | impcom | |- ( ( Fun ( iEdg ` G ) /\ F ( Walks ` G ) P ) -> ( ( ( # ` F ) = 1 /\ ( P ` 0 ) = ( P ` 1 ) ) -> { ( P ` 0 ) } e. ( Edg ` G ) ) ) |
| 44 | 43 | imp | |- ( ( ( Fun ( iEdg ` G ) /\ F ( Walks ` G ) P ) /\ ( ( # ` F ) = 1 /\ ( P ` 0 ) = ( P ` 1 ) ) ) -> { ( P ` 0 ) } e. ( Edg ` G ) ) |