This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for theorems for properties of walks between two vertices, e.g., trlsonprop . (Contributed by AV, 16-Jan-2021) Remove is-walk hypothesis. (Revised by SN, 13-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wksonproplem.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| wksonproplem.b | ⊢ ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) → ( 𝐹 ( 𝐴 ( 𝑊 ‘ 𝐺 ) 𝐵 ) 𝑃 ↔ ( 𝐹 ( 𝐴 ( 𝑂 ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ 𝐹 ( 𝑄 ‘ 𝐺 ) 𝑃 ) ) ) | ||
| wksonproplem.d | ⊢ 𝑊 = ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( 𝑎 ( 𝑂 ‘ 𝑔 ) 𝑏 ) 𝑝 ∧ 𝑓 ( 𝑄 ‘ 𝑔 ) 𝑝 ) } ) ) | ||
| Assertion | wksonproplem | ⊢ ( 𝐹 ( 𝐴 ( 𝑊 ‘ 𝐺 ) 𝐵 ) 𝑃 → ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( 𝐴 ( 𝑂 ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ 𝐹 ( 𝑄 ‘ 𝐺 ) 𝑃 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wksonproplem.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | wksonproplem.b | ⊢ ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) → ( 𝐹 ( 𝐴 ( 𝑊 ‘ 𝐺 ) 𝐵 ) 𝑃 ↔ ( 𝐹 ( 𝐴 ( 𝑂 ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ 𝐹 ( 𝑄 ‘ 𝐺 ) 𝑃 ) ) ) | |
| 3 | wksonproplem.d | ⊢ 𝑊 = ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( 𝑎 ( 𝑂 ‘ 𝑔 ) 𝑏 ) 𝑝 ∧ 𝑓 ( 𝑄 ‘ 𝑔 ) 𝑝 ) } ) ) | |
| 4 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 5 | simp1 | ⊢ ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐺 ∈ V ) | |
| 6 | simp2 | ⊢ ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) | |
| 7 | 6 1 | eleqtrdi | ⊢ ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) |
| 8 | simp3 | ⊢ ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ 𝑉 ) | |
| 9 | 8 1 | eleqtrdi | ⊢ ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) |
| 10 | 5 7 9 3 | mptmpoopabovd | ⊢ ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ( 𝑊 ‘ 𝐺 ) 𝐵 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( 𝐴 ( 𝑂 ‘ 𝐺 ) 𝐵 ) 𝑝 ∧ 𝑓 ( 𝑄 ‘ 𝐺 ) 𝑝 ) } ) |
| 11 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ) | |
| 12 | 11 1 | eqtr4di | ⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = 𝑉 ) |
| 13 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( 𝑂 ‘ 𝑔 ) = ( 𝑂 ‘ 𝐺 ) ) | |
| 14 | 13 | oveqd | ⊢ ( 𝑔 = 𝐺 → ( 𝑎 ( 𝑂 ‘ 𝑔 ) 𝑏 ) = ( 𝑎 ( 𝑂 ‘ 𝐺 ) 𝑏 ) ) |
| 15 | 14 | breqd | ⊢ ( 𝑔 = 𝐺 → ( 𝑓 ( 𝑎 ( 𝑂 ‘ 𝑔 ) 𝑏 ) 𝑝 ↔ 𝑓 ( 𝑎 ( 𝑂 ‘ 𝐺 ) 𝑏 ) 𝑝 ) ) |
| 16 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( 𝑄 ‘ 𝑔 ) = ( 𝑄 ‘ 𝐺 ) ) | |
| 17 | 16 | breqd | ⊢ ( 𝑔 = 𝐺 → ( 𝑓 ( 𝑄 ‘ 𝑔 ) 𝑝 ↔ 𝑓 ( 𝑄 ‘ 𝐺 ) 𝑝 ) ) |
| 18 | 15 17 | anbi12d | ⊢ ( 𝑔 = 𝐺 → ( ( 𝑓 ( 𝑎 ( 𝑂 ‘ 𝑔 ) 𝑏 ) 𝑝 ∧ 𝑓 ( 𝑄 ‘ 𝑔 ) 𝑝 ) ↔ ( 𝑓 ( 𝑎 ( 𝑂 ‘ 𝐺 ) 𝑏 ) 𝑝 ∧ 𝑓 ( 𝑄 ‘ 𝐺 ) 𝑝 ) ) ) |
| 19 | 3 10 12 12 18 | bropfvvvv | ⊢ ( ( 𝑉 ∈ V ∧ 𝑉 ∈ V ) → ( 𝐹 ( 𝐴 ( 𝑊 ‘ 𝐺 ) 𝐵 ) 𝑃 → ( 𝐺 ∈ V ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) ) |
| 20 | 4 4 19 | mp2an | ⊢ ( 𝐹 ( 𝐴 ( 𝑊 ‘ 𝐺 ) 𝐵 ) 𝑃 → ( 𝐺 ∈ V ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) |
| 21 | 3anass | ⊢ ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ↔ ( 𝐺 ∈ V ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ) | |
| 22 | 21 | anbi1i | ⊢ ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ↔ ( ( 𝐺 ∈ V ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) |
| 23 | df-3an | ⊢ ( ( 𝐺 ∈ V ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ↔ ( ( 𝐺 ∈ V ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) | |
| 24 | 22 23 | bitr4i | ⊢ ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ↔ ( 𝐺 ∈ V ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) |
| 25 | 20 24 | sylibr | ⊢ ( 𝐹 ( 𝐴 ( 𝑊 ‘ 𝐺 ) 𝐵 ) 𝑃 → ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ) |
| 26 | 2 | biimpd | ⊢ ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) → ( 𝐹 ( 𝐴 ( 𝑊 ‘ 𝐺 ) 𝐵 ) 𝑃 → ( 𝐹 ( 𝐴 ( 𝑂 ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ 𝐹 ( 𝑄 ‘ 𝐺 ) 𝑃 ) ) ) |
| 27 | 26 | imdistani | ⊢ ( ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ∧ 𝐹 ( 𝐴 ( 𝑊 ‘ 𝐺 ) 𝐵 ) 𝑃 ) → ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ∧ ( 𝐹 ( 𝐴 ( 𝑂 ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ 𝐹 ( 𝑄 ‘ 𝐺 ) 𝑃 ) ) ) |
| 28 | 25 27 | mpancom | ⊢ ( 𝐹 ( 𝐴 ( 𝑊 ‘ 𝐺 ) 𝐵 ) 𝑃 → ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ∧ ( 𝐹 ( 𝐴 ( 𝑂 ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ 𝐹 ( 𝑄 ‘ 𝐺 ) 𝑃 ) ) ) |
| 29 | df-3an | ⊢ ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( 𝐴 ( 𝑂 ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ 𝐹 ( 𝑄 ‘ 𝐺 ) 𝑃 ) ) ↔ ( ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ) ∧ ( 𝐹 ( 𝐴 ( 𝑂 ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ 𝐹 ( 𝑄 ‘ 𝐺 ) 𝑃 ) ) ) | |
| 30 | 28 29 | sylibr | ⊢ ( 𝐹 ( 𝐴 ( 𝑊 ‘ 𝐺 ) 𝐵 ) 𝑃 → ( ( 𝐺 ∈ V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ∧ ( 𝐹 ∈ V ∧ 𝑃 ∈ V ) ∧ ( 𝐹 ( 𝐴 ( 𝑂 ‘ 𝐺 ) 𝐵 ) 𝑃 ∧ 𝐹 ( 𝑄 ‘ 𝐺 ) 𝑃 ) ) ) |