This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The operation value of a function value of a collection of ordered pairs of related elements. (Contributed by Alexander van der Vekens, 8-Nov-2017) (Revised by AV, 15-Jan-2021) Add disjoint variable condition on D , f , h to remove hypotheses. (Revised by SN, 13-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mptmpoopabbrd.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | |
| mptmpoopabbrd.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 ‘ 𝐺 ) ) | ||
| mptmpoopabbrd.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ‘ 𝐺 ) ) | ||
| mptmpoopabovd.m | ⊢ 𝑀 = ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( 𝐴 ‘ 𝑔 ) , 𝑏 ∈ ( 𝐵 ‘ 𝑔 ) ↦ { 〈 𝑓 , ℎ 〉 ∣ ( 𝑓 ( 𝑎 ( 𝐶 ‘ 𝑔 ) 𝑏 ) ℎ ∧ 𝑓 ( 𝐷 ‘ 𝑔 ) ℎ ) } ) ) | ||
| Assertion | mptmpoopabovd | ⊢ ( 𝜑 → ( 𝑋 ( 𝑀 ‘ 𝐺 ) 𝑌 ) = { 〈 𝑓 , ℎ 〉 ∣ ( 𝑓 ( 𝑋 ( 𝐶 ‘ 𝐺 ) 𝑌 ) ℎ ∧ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptmpoopabbrd.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑊 ) | |
| 2 | mptmpoopabbrd.x | ⊢ ( 𝜑 → 𝑋 ∈ ( 𝐴 ‘ 𝐺 ) ) | |
| 3 | mptmpoopabbrd.y | ⊢ ( 𝜑 → 𝑌 ∈ ( 𝐵 ‘ 𝐺 ) ) | |
| 4 | mptmpoopabovd.m | ⊢ 𝑀 = ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( 𝐴 ‘ 𝑔 ) , 𝑏 ∈ ( 𝐵 ‘ 𝑔 ) ↦ { 〈 𝑓 , ℎ 〉 ∣ ( 𝑓 ( 𝑎 ( 𝐶 ‘ 𝑔 ) 𝑏 ) ℎ ∧ 𝑓 ( 𝐷 ‘ 𝑔 ) ℎ ) } ) ) | |
| 5 | oveq12 | ⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ( 𝑎 ( 𝐶 ‘ 𝐺 ) 𝑏 ) = ( 𝑋 ( 𝐶 ‘ 𝐺 ) 𝑌 ) ) | |
| 6 | 5 | breqd | ⊢ ( ( 𝑎 = 𝑋 ∧ 𝑏 = 𝑌 ) → ( 𝑓 ( 𝑎 ( 𝐶 ‘ 𝐺 ) 𝑏 ) ℎ ↔ 𝑓 ( 𝑋 ( 𝐶 ‘ 𝐺 ) 𝑌 ) ℎ ) ) |
| 7 | fveq2 | ⊢ ( 𝑔 = 𝐺 → ( 𝐶 ‘ 𝑔 ) = ( 𝐶 ‘ 𝐺 ) ) | |
| 8 | 7 | oveqd | ⊢ ( 𝑔 = 𝐺 → ( 𝑎 ( 𝐶 ‘ 𝑔 ) 𝑏 ) = ( 𝑎 ( 𝐶 ‘ 𝐺 ) 𝑏 ) ) |
| 9 | 8 | breqd | ⊢ ( 𝑔 = 𝐺 → ( 𝑓 ( 𝑎 ( 𝐶 ‘ 𝑔 ) 𝑏 ) ℎ ↔ 𝑓 ( 𝑎 ( 𝐶 ‘ 𝐺 ) 𝑏 ) ℎ ) ) |
| 10 | 1 2 3 6 9 4 | mptmpoopabbrd | ⊢ ( 𝜑 → ( 𝑋 ( 𝑀 ‘ 𝐺 ) 𝑌 ) = { 〈 𝑓 , ℎ 〉 ∣ ( 𝑓 ( 𝑋 ( 𝐶 ‘ 𝐺 ) 𝑌 ) ℎ ∧ 𝑓 ( 𝐷 ‘ 𝐺 ) ℎ ) } ) |