This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for theorems for properties of walks between two vertices, e.g., trlsonprop . (Contributed by AV, 16-Jan-2021) Remove is-walk hypothesis. (Revised by SN, 13-Dec-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wksonproplem.v | |- V = ( Vtx ` G ) |
|
| wksonproplem.b | |- ( ( ( G e. _V /\ A e. V /\ B e. V ) /\ ( F e. _V /\ P e. _V ) ) -> ( F ( A ( W ` G ) B ) P <-> ( F ( A ( O ` G ) B ) P /\ F ( Q ` G ) P ) ) ) |
||
| wksonproplem.d | |- W = ( g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { <. f , p >. | ( f ( a ( O ` g ) b ) p /\ f ( Q ` g ) p ) } ) ) |
||
| Assertion | wksonproplem | |- ( F ( A ( W ` G ) B ) P -> ( ( G e. _V /\ A e. V /\ B e. V ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( A ( O ` G ) B ) P /\ F ( Q ` G ) P ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wksonproplem.v | |- V = ( Vtx ` G ) |
|
| 2 | wksonproplem.b | |- ( ( ( G e. _V /\ A e. V /\ B e. V ) /\ ( F e. _V /\ P e. _V ) ) -> ( F ( A ( W ` G ) B ) P <-> ( F ( A ( O ` G ) B ) P /\ F ( Q ` G ) P ) ) ) |
|
| 3 | wksonproplem.d | |- W = ( g e. _V |-> ( a e. ( Vtx ` g ) , b e. ( Vtx ` g ) |-> { <. f , p >. | ( f ( a ( O ` g ) b ) p /\ f ( Q ` g ) p ) } ) ) |
|
| 4 | 1 | fvexi | |- V e. _V |
| 5 | simp1 | |- ( ( G e. _V /\ A e. V /\ B e. V ) -> G e. _V ) |
|
| 6 | simp2 | |- ( ( G e. _V /\ A e. V /\ B e. V ) -> A e. V ) |
|
| 7 | 6 1 | eleqtrdi | |- ( ( G e. _V /\ A e. V /\ B e. V ) -> A e. ( Vtx ` G ) ) |
| 8 | simp3 | |- ( ( G e. _V /\ A e. V /\ B e. V ) -> B e. V ) |
|
| 9 | 8 1 | eleqtrdi | |- ( ( G e. _V /\ A e. V /\ B e. V ) -> B e. ( Vtx ` G ) ) |
| 10 | 5 7 9 3 | mptmpoopabovd | |- ( ( G e. _V /\ A e. V /\ B e. V ) -> ( A ( W ` G ) B ) = { <. f , p >. | ( f ( A ( O ` G ) B ) p /\ f ( Q ` G ) p ) } ) |
| 11 | fveq2 | |- ( g = G -> ( Vtx ` g ) = ( Vtx ` G ) ) |
|
| 12 | 11 1 | eqtr4di | |- ( g = G -> ( Vtx ` g ) = V ) |
| 13 | fveq2 | |- ( g = G -> ( O ` g ) = ( O ` G ) ) |
|
| 14 | 13 | oveqd | |- ( g = G -> ( a ( O ` g ) b ) = ( a ( O ` G ) b ) ) |
| 15 | 14 | breqd | |- ( g = G -> ( f ( a ( O ` g ) b ) p <-> f ( a ( O ` G ) b ) p ) ) |
| 16 | fveq2 | |- ( g = G -> ( Q ` g ) = ( Q ` G ) ) |
|
| 17 | 16 | breqd | |- ( g = G -> ( f ( Q ` g ) p <-> f ( Q ` G ) p ) ) |
| 18 | 15 17 | anbi12d | |- ( g = G -> ( ( f ( a ( O ` g ) b ) p /\ f ( Q ` g ) p ) <-> ( f ( a ( O ` G ) b ) p /\ f ( Q ` G ) p ) ) ) |
| 19 | 3 10 12 12 18 | bropfvvvv | |- ( ( V e. _V /\ V e. _V ) -> ( F ( A ( W ` G ) B ) P -> ( G e. _V /\ ( A e. V /\ B e. V ) /\ ( F e. _V /\ P e. _V ) ) ) ) |
| 20 | 4 4 19 | mp2an | |- ( F ( A ( W ` G ) B ) P -> ( G e. _V /\ ( A e. V /\ B e. V ) /\ ( F e. _V /\ P e. _V ) ) ) |
| 21 | 3anass | |- ( ( G e. _V /\ A e. V /\ B e. V ) <-> ( G e. _V /\ ( A e. V /\ B e. V ) ) ) |
|
| 22 | 21 | anbi1i | |- ( ( ( G e. _V /\ A e. V /\ B e. V ) /\ ( F e. _V /\ P e. _V ) ) <-> ( ( G e. _V /\ ( A e. V /\ B e. V ) ) /\ ( F e. _V /\ P e. _V ) ) ) |
| 23 | df-3an | |- ( ( G e. _V /\ ( A e. V /\ B e. V ) /\ ( F e. _V /\ P e. _V ) ) <-> ( ( G e. _V /\ ( A e. V /\ B e. V ) ) /\ ( F e. _V /\ P e. _V ) ) ) |
|
| 24 | 22 23 | bitr4i | |- ( ( ( G e. _V /\ A e. V /\ B e. V ) /\ ( F e. _V /\ P e. _V ) ) <-> ( G e. _V /\ ( A e. V /\ B e. V ) /\ ( F e. _V /\ P e. _V ) ) ) |
| 25 | 20 24 | sylibr | |- ( F ( A ( W ` G ) B ) P -> ( ( G e. _V /\ A e. V /\ B e. V ) /\ ( F e. _V /\ P e. _V ) ) ) |
| 26 | 2 | biimpd | |- ( ( ( G e. _V /\ A e. V /\ B e. V ) /\ ( F e. _V /\ P e. _V ) ) -> ( F ( A ( W ` G ) B ) P -> ( F ( A ( O ` G ) B ) P /\ F ( Q ` G ) P ) ) ) |
| 27 | 26 | imdistani | |- ( ( ( ( G e. _V /\ A e. V /\ B e. V ) /\ ( F e. _V /\ P e. _V ) ) /\ F ( A ( W ` G ) B ) P ) -> ( ( ( G e. _V /\ A e. V /\ B e. V ) /\ ( F e. _V /\ P e. _V ) ) /\ ( F ( A ( O ` G ) B ) P /\ F ( Q ` G ) P ) ) ) |
| 28 | 25 27 | mpancom | |- ( F ( A ( W ` G ) B ) P -> ( ( ( G e. _V /\ A e. V /\ B e. V ) /\ ( F e. _V /\ P e. _V ) ) /\ ( F ( A ( O ` G ) B ) P /\ F ( Q ` G ) P ) ) ) |
| 29 | df-3an | |- ( ( ( G e. _V /\ A e. V /\ B e. V ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( A ( O ` G ) B ) P /\ F ( Q ` G ) P ) ) <-> ( ( ( G e. _V /\ A e. V /\ B e. V ) /\ ( F e. _V /\ P e. _V ) ) /\ ( F ( A ( O ` G ) B ) P /\ F ( Q ` G ) P ) ) ) |
|
| 30 | 28 29 | sylibr | |- ( F ( A ( W ` G ) B ) P -> ( ( G e. _V /\ A e. V /\ B e. V ) /\ ( F e. _V /\ P e. _V ) /\ ( F ( A ( O ` G ) B ) P /\ F ( Q ` G ) P ) ) ) |