This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of trails between two vertices. (Contributed by Alexander van der Vekens, 4-Nov-2017) (Revised by AV, 7-Jan-2021) (Proof shortened by AV, 15-Jan-2021) (Revised by AV, 21-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | trlsonfval.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | trlsonfval | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑝 ∧ 𝑓 ( Trails ‘ 𝐺 ) 𝑝 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlsonfval.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | 1 | 1vgrex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐺 ∈ V ) |
| 3 | 2 | adantr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐺 ∈ V ) |
| 4 | simpl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ 𝑉 ) | |
| 5 | 4 1 | eleqtrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ ( Vtx ‘ 𝐺 ) ) |
| 6 | simpr | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ 𝑉 ) | |
| 7 | 6 1 | eleqtrdi | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ ( Vtx ‘ 𝐺 ) ) |
| 8 | df-trlson | ⊢ TrailsOn = ( 𝑔 ∈ V ↦ ( 𝑎 ∈ ( Vtx ‘ 𝑔 ) , 𝑏 ∈ ( Vtx ‘ 𝑔 ) ↦ { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( 𝑎 ( WalksOn ‘ 𝑔 ) 𝑏 ) 𝑝 ∧ 𝑓 ( Trails ‘ 𝑔 ) 𝑝 ) } ) ) | |
| 9 | 3 5 7 8 | mptmpoopabovd | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ( TrailsOn ‘ 𝐺 ) 𝐵 ) = { 〈 𝑓 , 𝑝 〉 ∣ ( 𝑓 ( 𝐴 ( WalksOn ‘ 𝐺 ) 𝐵 ) 𝑝 ∧ 𝑓 ( Trails ‘ 𝐺 ) 𝑝 ) } ) |