This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A weakly inaccessible cardinal is infinite. (Contributed by Mario Carneiro, 29-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | winainflem | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) → ω ⊆ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0suc | ⊢ ( 𝐴 ∈ ω → ( 𝐴 = ∅ ∨ ∃ 𝑧 ∈ ω 𝐴 = suc 𝑧 ) ) | |
| 2 | simp1 | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) → 𝐴 ≠ ∅ ) | |
| 3 | 2 | necon2bi | ⊢ ( 𝐴 = ∅ → ¬ ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ) |
| 4 | vex | ⊢ 𝑧 ∈ V | |
| 5 | 4 | sucid | ⊢ 𝑧 ∈ suc 𝑧 |
| 6 | eleq2 | ⊢ ( 𝐴 = suc 𝑧 → ( 𝑧 ∈ 𝐴 ↔ 𝑧 ∈ suc 𝑧 ) ) | |
| 7 | 5 6 | mpbiri | ⊢ ( 𝐴 = suc 𝑧 → 𝑧 ∈ 𝐴 ) |
| 8 | 7 | adantl | ⊢ ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ) → 𝑧 ∈ 𝐴 ) |
| 9 | breq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ≺ 𝑦 ↔ 𝑧 ≺ 𝑦 ) ) | |
| 10 | 9 | rexbidv | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ↔ ∃ 𝑦 ∈ 𝐴 𝑧 ≺ 𝑦 ) ) |
| 11 | breq2 | ⊢ ( 𝑦 = 𝑤 → ( 𝑧 ≺ 𝑦 ↔ 𝑧 ≺ 𝑤 ) ) | |
| 12 | 11 | cbvrexvw | ⊢ ( ∃ 𝑦 ∈ 𝐴 𝑧 ≺ 𝑦 ↔ ∃ 𝑤 ∈ 𝐴 𝑧 ≺ 𝑤 ) |
| 13 | 10 12 | bitrdi | ⊢ ( 𝑥 = 𝑧 → ( ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ↔ ∃ 𝑤 ∈ 𝐴 𝑧 ≺ 𝑤 ) ) |
| 14 | 13 | rspcv | ⊢ ( 𝑧 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 → ∃ 𝑤 ∈ 𝐴 𝑧 ≺ 𝑤 ) ) |
| 15 | 8 14 | syl | ⊢ ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 → ∃ 𝑤 ∈ 𝐴 𝑧 ≺ 𝑤 ) ) |
| 16 | eleq2 | ⊢ ( 𝐴 = suc 𝑧 → ( 𝑤 ∈ 𝐴 ↔ 𝑤 ∈ suc 𝑧 ) ) | |
| 17 | 16 | biimpa | ⊢ ( ( 𝐴 = suc 𝑧 ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ∈ suc 𝑧 ) |
| 18 | 17 | 3ad2antl2 | ⊢ ( ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ∈ suc 𝑧 ) |
| 19 | nnon | ⊢ ( 𝑧 ∈ ω → 𝑧 ∈ On ) | |
| 20 | onsuc | ⊢ ( 𝑧 ∈ On → suc 𝑧 ∈ On ) | |
| 21 | 19 20 | syl | ⊢ ( 𝑧 ∈ ω → suc 𝑧 ∈ On ) |
| 22 | eleq1 | ⊢ ( 𝐴 = suc 𝑧 → ( 𝐴 ∈ On ↔ suc 𝑧 ∈ On ) ) | |
| 23 | 22 | biimparc | ⊢ ( ( suc 𝑧 ∈ On ∧ 𝐴 = suc 𝑧 ) → 𝐴 ∈ On ) |
| 24 | 21 23 | sylan | ⊢ ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ) → 𝐴 ∈ On ) |
| 25 | 24 | 3adant3 | ⊢ ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) → 𝐴 ∈ On ) |
| 26 | onelon | ⊢ ( ( 𝐴 ∈ On ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ∈ On ) | |
| 27 | 25 26 | sylan | ⊢ ( ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ∈ On ) |
| 28 | simpl1 | ⊢ ( ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ∧ 𝑤 ∈ 𝐴 ) → 𝑧 ∈ ω ) | |
| 29 | 28 19 | syl | ⊢ ( ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ∧ 𝑤 ∈ 𝐴 ) → 𝑧 ∈ On ) |
| 30 | onsssuc | ⊢ ( ( 𝑤 ∈ On ∧ 𝑧 ∈ On ) → ( 𝑤 ⊆ 𝑧 ↔ 𝑤 ∈ suc 𝑧 ) ) | |
| 31 | 27 29 30 | syl2anc | ⊢ ( ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ∧ 𝑤 ∈ 𝐴 ) → ( 𝑤 ⊆ 𝑧 ↔ 𝑤 ∈ suc 𝑧 ) ) |
| 32 | 18 31 | mpbird | ⊢ ( ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ⊆ 𝑧 ) |
| 33 | ssdomg | ⊢ ( 𝑧 ∈ V → ( 𝑤 ⊆ 𝑧 → 𝑤 ≼ 𝑧 ) ) | |
| 34 | 4 32 33 | mpsyl | ⊢ ( ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ∧ 𝑤 ∈ 𝐴 ) → 𝑤 ≼ 𝑧 ) |
| 35 | domnsym | ⊢ ( 𝑤 ≼ 𝑧 → ¬ 𝑧 ≺ 𝑤 ) | |
| 36 | 34 35 | syl | ⊢ ( ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ∧ 𝑤 ∈ 𝐴 ) → ¬ 𝑧 ≺ 𝑤 ) |
| 37 | 36 | nrexdv | ⊢ ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) → ¬ ∃ 𝑤 ∈ 𝐴 𝑧 ≺ 𝑤 ) |
| 38 | 37 | 3expia | ⊢ ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ) → ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 → ¬ ∃ 𝑤 ∈ 𝐴 𝑧 ≺ 𝑤 ) ) |
| 39 | 15 38 | pm2.65d | ⊢ ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ) → ¬ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) |
| 40 | 39 | intn3an3d | ⊢ ( ( 𝑧 ∈ ω ∧ 𝐴 = suc 𝑧 ) → ¬ ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ) |
| 41 | 40 | rexlimiva | ⊢ ( ∃ 𝑧 ∈ ω 𝐴 = suc 𝑧 → ¬ ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ) |
| 42 | 3 41 | jaoi | ⊢ ( ( 𝐴 = ∅ ∨ ∃ 𝑧 ∈ ω 𝐴 = suc 𝑧 ) → ¬ ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ) |
| 43 | 1 42 | syl | ⊢ ( 𝐴 ∈ ω → ¬ ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) ) |
| 44 | 43 | con2i | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) → ¬ 𝐴 ∈ ω ) |
| 45 | ordom | ⊢ Ord ω | |
| 46 | eloni | ⊢ ( 𝐴 ∈ On → Ord 𝐴 ) | |
| 47 | 46 | 3ad2ant2 | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) → Ord 𝐴 ) |
| 48 | ordtri1 | ⊢ ( ( Ord ω ∧ Ord 𝐴 ) → ( ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω ) ) | |
| 49 | 45 47 48 | sylancr | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) → ( ω ⊆ 𝐴 ↔ ¬ 𝐴 ∈ ω ) ) |
| 50 | 44 49 | mpbird | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐴 ∈ On ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝑥 ≺ 𝑦 ) → ω ⊆ 𝐴 ) |