This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Covering implies injection on power sets. (Contributed by Stefan O'Rear, 6-Nov-2014) (Revised by Mario Carneiro, 24-Jun-2015) (Revised by AV, 18-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fopwdom | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → 𝒫 𝐵 ≼ 𝒫 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn | ⊢ ( ◡ 𝐹 “ 𝑎 ) ⊆ ran ◡ 𝐹 | |
| 2 | dfdm4 | ⊢ dom 𝐹 = ran ◡ 𝐹 | |
| 3 | fof | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐹 : 𝐴 ⟶ 𝐵 ) | |
| 4 | 3 | fdmd | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → dom 𝐹 = 𝐴 ) |
| 5 | 2 4 | eqtr3id | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ran ◡ 𝐹 = 𝐴 ) |
| 6 | 1 5 | sseqtrid | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( ◡ 𝐹 “ 𝑎 ) ⊆ 𝐴 ) |
| 7 | 6 | adantl | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → ( ◡ 𝐹 “ 𝑎 ) ⊆ 𝐴 ) |
| 8 | cnvexg | ⊢ ( 𝐹 ∈ 𝑉 → ◡ 𝐹 ∈ V ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → ◡ 𝐹 ∈ V ) |
| 10 | imaexg | ⊢ ( ◡ 𝐹 ∈ V → ( ◡ 𝐹 “ 𝑎 ) ∈ V ) | |
| 11 | elpwg | ⊢ ( ( ◡ 𝐹 “ 𝑎 ) ∈ V → ( ( ◡ 𝐹 “ 𝑎 ) ∈ 𝒫 𝐴 ↔ ( ◡ 𝐹 “ 𝑎 ) ⊆ 𝐴 ) ) | |
| 12 | 9 10 11 | 3syl | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → ( ( ◡ 𝐹 “ 𝑎 ) ∈ 𝒫 𝐴 ↔ ( ◡ 𝐹 “ 𝑎 ) ⊆ 𝐴 ) ) |
| 13 | 7 12 | mpbird | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → ( ◡ 𝐹 “ 𝑎 ) ∈ 𝒫 𝐴 ) |
| 14 | 13 | a1d | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → ( 𝑎 ∈ 𝒫 𝐵 → ( ◡ 𝐹 “ 𝑎 ) ∈ 𝒫 𝐴 ) ) |
| 15 | imaeq2 | ⊢ ( ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ 𝑏 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑎 ) ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝑏 ) ) ) | |
| 16 | 15 | adantl | ⊢ ( ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵 ) ) ∧ ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ 𝑏 ) ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑎 ) ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝑏 ) ) ) |
| 17 | simpllr | ⊢ ( ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵 ) ) ∧ ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ 𝑏 ) ) → 𝐹 : 𝐴 –onto→ 𝐵 ) | |
| 18 | simplrl | ⊢ ( ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵 ) ) ∧ ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ 𝑏 ) ) → 𝑎 ∈ 𝒫 𝐵 ) | |
| 19 | 18 | elpwid | ⊢ ( ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵 ) ) ∧ ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ 𝑏 ) ) → 𝑎 ⊆ 𝐵 ) |
| 20 | foimacnv | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑎 ⊆ 𝐵 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑎 ) ) = 𝑎 ) | |
| 21 | 17 19 20 | syl2anc | ⊢ ( ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵 ) ) ∧ ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ 𝑏 ) ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑎 ) ) = 𝑎 ) |
| 22 | simplrr | ⊢ ( ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵 ) ) ∧ ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ 𝑏 ) ) → 𝑏 ∈ 𝒫 𝐵 ) | |
| 23 | 22 | elpwid | ⊢ ( ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵 ) ) ∧ ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ 𝑏 ) ) → 𝑏 ⊆ 𝐵 ) |
| 24 | foimacnv | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑏 ⊆ 𝐵 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑏 ) ) = 𝑏 ) | |
| 25 | 17 23 24 | syl2anc | ⊢ ( ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵 ) ) ∧ ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ 𝑏 ) ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑏 ) ) = 𝑏 ) |
| 26 | 16 21 25 | 3eqtr3d | ⊢ ( ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵 ) ) ∧ ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ 𝑏 ) ) → 𝑎 = 𝑏 ) |
| 27 | 26 | ex | ⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵 ) ) → ( ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ 𝑏 ) → 𝑎 = 𝑏 ) ) |
| 28 | imaeq2 | ⊢ ( 𝑎 = 𝑏 → ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ 𝑏 ) ) | |
| 29 | 27 28 | impbid1 | ⊢ ( ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) ∧ ( 𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵 ) ) → ( ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ 𝑏 ) ↔ 𝑎 = 𝑏 ) ) |
| 30 | 29 | ex | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → ( ( 𝑎 ∈ 𝒫 𝐵 ∧ 𝑏 ∈ 𝒫 𝐵 ) → ( ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ 𝑏 ) ↔ 𝑎 = 𝑏 ) ) ) |
| 31 | rnexg | ⊢ ( 𝐹 ∈ 𝑉 → ran 𝐹 ∈ V ) | |
| 32 | forn | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ran 𝐹 = 𝐵 ) | |
| 33 | 32 | eleq1d | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ( ran 𝐹 ∈ V ↔ 𝐵 ∈ V ) ) |
| 34 | 31 33 | syl5ibcom | ⊢ ( 𝐹 ∈ 𝑉 → ( 𝐹 : 𝐴 –onto→ 𝐵 → 𝐵 ∈ V ) ) |
| 35 | 34 | imp | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → 𝐵 ∈ V ) |
| 36 | 35 | pwexd | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → 𝒫 𝐵 ∈ V ) |
| 37 | dmfex | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝐴 ∈ V ) | |
| 38 | 3 37 | sylan2 | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → 𝐴 ∈ V ) |
| 39 | 38 | pwexd | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → 𝒫 𝐴 ∈ V ) |
| 40 | 14 30 36 39 | dom3d | ⊢ ( ( 𝐹 ∈ 𝑉 ∧ 𝐹 : 𝐴 –onto→ 𝐵 ) → 𝒫 𝐵 ≼ 𝒫 𝐴 ) |