This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for vtxdushgrfvedg and vtxdusgrfvedg . (Contributed by AV, 12-Dec-2020) (Proof shortened by AV, 5-May-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdushgrfvedg.v | |- V = ( Vtx ` G ) |
|
| vtxdushgrfvedg.e | |- E = ( Edg ` G ) |
||
| Assertion | vtxdushgrfvedglem | |- ( ( G e. USHGraph /\ U e. V ) -> ( # ` { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } ) = ( # ` { e e. E | U e. e } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdushgrfvedg.v | |- V = ( Vtx ` G ) |
|
| 2 | vtxdushgrfvedg.e | |- E = ( Edg ` G ) |
|
| 3 | fvex | |- ( iEdg ` G ) e. _V |
|
| 4 | 3 | dmex | |- dom ( iEdg ` G ) e. _V |
| 5 | 4 | rabex | |- { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } e. _V |
| 6 | 5 | a1i | |- ( ( G e. USHGraph /\ U e. V ) -> { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } e. _V ) |
| 7 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 8 | eqid | |- { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } = { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } |
|
| 9 | eleq2w | |- ( e = c -> ( U e. e <-> U e. c ) ) |
|
| 10 | 9 | cbvrabv | |- { e e. E | U e. e } = { c e. E | U e. c } |
| 11 | eqid | |- ( x e. { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } |-> ( ( iEdg ` G ) ` x ) ) = ( x e. { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } |-> ( ( iEdg ` G ) ` x ) ) |
|
| 12 | 2 7 1 8 10 11 | ushgredgedg | |- ( ( G e. USHGraph /\ U e. V ) -> ( x e. { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } |-> ( ( iEdg ` G ) ` x ) ) : { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } -1-1-onto-> { e e. E | U e. e } ) |
| 13 | 6 12 | hasheqf1od | |- ( ( G e. USHGraph /\ U e. V ) -> ( # ` { i e. dom ( iEdg ` G ) | U e. ( ( iEdg ` G ) ` i ) } ) = ( # ` { e e. E | U e. e } ) ) |