This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 4 for vtxdginducedm1 . (Contributed by AV, 17-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdginducedm1.v | |- V = ( Vtx ` G ) |
|
| vtxdginducedm1.e | |- E = ( iEdg ` G ) |
||
| vtxdginducedm1.k | |- K = ( V \ { N } ) |
||
| vtxdginducedm1.i | |- I = { i e. dom E | N e/ ( E ` i ) } |
||
| vtxdginducedm1.p | |- P = ( E |` I ) |
||
| vtxdginducedm1.s | |- S = <. K , P >. |
||
| vtxdginducedm1.j | |- J = { i e. dom E | N e. ( E ` i ) } |
||
| Assertion | vtxdginducedm1lem4 | |- ( W e. ( V \ { N } ) -> ( # ` { k e. J | ( E ` k ) = { W } } ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdginducedm1.v | |- V = ( Vtx ` G ) |
|
| 2 | vtxdginducedm1.e | |- E = ( iEdg ` G ) |
|
| 3 | vtxdginducedm1.k | |- K = ( V \ { N } ) |
|
| 4 | vtxdginducedm1.i | |- I = { i e. dom E | N e/ ( E ` i ) } |
|
| 5 | vtxdginducedm1.p | |- P = ( E |` I ) |
|
| 6 | vtxdginducedm1.s | |- S = <. K , P >. |
|
| 7 | vtxdginducedm1.j | |- J = { i e. dom E | N e. ( E ` i ) } |
|
| 8 | fveq2 | |- ( i = k -> ( E ` i ) = ( E ` k ) ) |
|
| 9 | 8 | eleq2d | |- ( i = k -> ( N e. ( E ` i ) <-> N e. ( E ` k ) ) ) |
| 10 | 9 7 | elrab2 | |- ( k e. J <-> ( k e. dom E /\ N e. ( E ` k ) ) ) |
| 11 | eldifsn | |- ( W e. ( V \ { N } ) <-> ( W e. V /\ W =/= N ) ) |
|
| 12 | df-ne | |- ( W =/= N <-> -. W = N ) |
|
| 13 | eleq2 | |- ( ( E ` k ) = { W } -> ( N e. ( E ` k ) <-> N e. { W } ) ) |
|
| 14 | elsni | |- ( N e. { W } -> N = W ) |
|
| 15 | 14 | eqcomd | |- ( N e. { W } -> W = N ) |
| 16 | 13 15 | biimtrdi | |- ( ( E ` k ) = { W } -> ( N e. ( E ` k ) -> W = N ) ) |
| 17 | 16 | com12 | |- ( N e. ( E ` k ) -> ( ( E ` k ) = { W } -> W = N ) ) |
| 18 | 17 | con3rr3 | |- ( -. W = N -> ( N e. ( E ` k ) -> -. ( E ` k ) = { W } ) ) |
| 19 | 12 18 | sylbi | |- ( W =/= N -> ( N e. ( E ` k ) -> -. ( E ` k ) = { W } ) ) |
| 20 | 11 19 | simplbiim | |- ( W e. ( V \ { N } ) -> ( N e. ( E ` k ) -> -. ( E ` k ) = { W } ) ) |
| 21 | 20 | com12 | |- ( N e. ( E ` k ) -> ( W e. ( V \ { N } ) -> -. ( E ` k ) = { W } ) ) |
| 22 | 10 21 | simplbiim | |- ( k e. J -> ( W e. ( V \ { N } ) -> -. ( E ` k ) = { W } ) ) |
| 23 | 22 | impcom | |- ( ( W e. ( V \ { N } ) /\ k e. J ) -> -. ( E ` k ) = { W } ) |
| 24 | 23 | ralrimiva | |- ( W e. ( V \ { N } ) -> A. k e. J -. ( E ` k ) = { W } ) |
| 25 | rabeq0 | |- ( { k e. J | ( E ` k ) = { W } } = (/) <-> A. k e. J -. ( E ` k ) = { W } ) |
|
| 26 | 24 25 | sylibr | |- ( W e. ( V \ { N } ) -> { k e. J | ( E ` k ) = { W } } = (/) ) |
| 27 | 2 | fvexi | |- E e. _V |
| 28 | 27 | dmex | |- dom E e. _V |
| 29 | 7 28 | rab2ex | |- { k e. J | ( E ` k ) = { W } } e. _V |
| 30 | hasheq0 | |- ( { k e. J | ( E ` k ) = { W } } e. _V -> ( ( # ` { k e. J | ( E ` k ) = { W } } ) = 0 <-> { k e. J | ( E ` k ) = { W } } = (/) ) ) |
|
| 31 | 29 30 | ax-mp | |- ( ( # ` { k e. J | ( E ` k ) = { W } } ) = 0 <-> { k e. J | ( E ` k ) = { W } } = (/) ) |
| 32 | 26 31 | sylibr | |- ( W e. ( V \ { N } ) -> ( # ` { k e. J | ( E ` k ) = { W } } ) = 0 ) |