This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertex degree function on graphs of finite size is a function from vertices to nonnegative integers. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 20-Dec-2017) (Revised by AV, 11-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdgf.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| vtxdg0e.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| vtxdgfisnn0.a | ⊢ 𝐴 = dom 𝐼 | ||
| Assertion | vtxdgfisf | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝐴 ∈ Fin ) → ( VtxDeg ‘ 𝐺 ) : 𝑉 ⟶ ℕ0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdgf.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | vtxdg0e.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | vtxdgfisnn0.a | ⊢ 𝐴 = dom 𝐼 | |
| 4 | 1 | vtxdgf | ⊢ ( 𝐺 ∈ 𝑊 → ( VtxDeg ‘ 𝐺 ) : 𝑉 ⟶ ℕ0* ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝐴 ∈ Fin ) → ( VtxDeg ‘ 𝐺 ) : 𝑉 ⟶ ℕ0* ) |
| 6 | 5 | ffnd | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝐴 ∈ Fin ) → ( VtxDeg ‘ 𝐺 ) Fn 𝑉 ) |
| 7 | 1 2 3 | vtxdgfisnn0 | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝑢 ∈ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) ∈ ℕ0 ) |
| 8 | 7 | adantll | ⊢ ( ( ( 𝐺 ∈ 𝑊 ∧ 𝐴 ∈ Fin ) ∧ 𝑢 ∈ 𝑉 ) → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) ∈ ℕ0 ) |
| 9 | 8 | ralrimiva | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝐴 ∈ Fin ) → ∀ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) ∈ ℕ0 ) |
| 10 | ffnfv | ⊢ ( ( VtxDeg ‘ 𝐺 ) : 𝑉 ⟶ ℕ0 ↔ ( ( VtxDeg ‘ 𝐺 ) Fn 𝑉 ∧ ∀ 𝑢 ∈ 𝑉 ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑢 ) ∈ ℕ0 ) ) | |
| 11 | 6 9 10 | sylanbrc | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝐴 ∈ Fin ) → ( VtxDeg ‘ 𝐺 ) : 𝑉 ⟶ ℕ0 ) |