This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertex degree function on graphs of finite size is a function from vertices to nonnegative integers. (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by Alexander van der Vekens, 20-Dec-2017) (Revised by AV, 11-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtxdgf.v | |- V = ( Vtx ` G ) |
|
| vtxdg0e.i | |- I = ( iEdg ` G ) |
||
| vtxdgfisnn0.a | |- A = dom I |
||
| Assertion | vtxdgfisf | |- ( ( G e. W /\ A e. Fin ) -> ( VtxDeg ` G ) : V --> NN0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdgf.v | |- V = ( Vtx ` G ) |
|
| 2 | vtxdg0e.i | |- I = ( iEdg ` G ) |
|
| 3 | vtxdgfisnn0.a | |- A = dom I |
|
| 4 | 1 | vtxdgf | |- ( G e. W -> ( VtxDeg ` G ) : V --> NN0* ) |
| 5 | 4 | adantr | |- ( ( G e. W /\ A e. Fin ) -> ( VtxDeg ` G ) : V --> NN0* ) |
| 6 | 5 | ffnd | |- ( ( G e. W /\ A e. Fin ) -> ( VtxDeg ` G ) Fn V ) |
| 7 | 1 2 3 | vtxdgfisnn0 | |- ( ( A e. Fin /\ u e. V ) -> ( ( VtxDeg ` G ) ` u ) e. NN0 ) |
| 8 | 7 | adantll | |- ( ( ( G e. W /\ A e. Fin ) /\ u e. V ) -> ( ( VtxDeg ` G ) ` u ) e. NN0 ) |
| 9 | 8 | ralrimiva | |- ( ( G e. W /\ A e. Fin ) -> A. u e. V ( ( VtxDeg ` G ) ` u ) e. NN0 ) |
| 10 | ffnfv | |- ( ( VtxDeg ` G ) : V --> NN0 <-> ( ( VtxDeg ` G ) Fn V /\ A. u e. V ( ( VtxDeg ` G ) ` u ) e. NN0 ) ) |
|
| 11 | 6 9 10 | sylanbrc | |- ( ( G e. W /\ A e. Fin ) -> ( VtxDeg ` G ) : V --> NN0 ) |