This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertex degree function is a function from vertices to extended nonnegative integers. (Contributed by Alexander van der Vekens, 20-Dec-2017) (Revised by AV, 10-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | vtxdgf.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| Assertion | vtxdgf | ⊢ ( 𝐺 ∈ 𝑊 → ( VtxDeg ‘ 𝐺 ) : 𝑉 ⟶ ℕ0* ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdgf.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 3 | eqid | ⊢ dom ( iEdg ‘ 𝐺 ) = dom ( iEdg ‘ 𝐺 ) | |
| 4 | 1 2 3 | vtxdgfval | ⊢ ( 𝐺 ∈ 𝑊 → ( VtxDeg ‘ 𝐺 ) = ( 𝑢 ∈ 𝑉 ↦ ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ) ) |
| 5 | eqid | ⊢ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } = { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } | |
| 6 | fvex | ⊢ ( iEdg ‘ 𝐺 ) ∈ V | |
| 7 | dmexg | ⊢ ( ( iEdg ‘ 𝐺 ) ∈ V → dom ( iEdg ‘ 𝐺 ) ∈ V ) | |
| 8 | 6 7 | mp1i | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑢 ∈ 𝑉 ) → dom ( iEdg ‘ 𝐺 ) ∈ V ) |
| 9 | 5 8 | rabexd | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑢 ∈ 𝑉 ) → { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ∈ V ) |
| 10 | hashxnn0 | ⊢ ( { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ∈ V → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) ∈ ℕ0* ) | |
| 11 | 9 10 | syl | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑢 ∈ 𝑉 ) → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) ∈ ℕ0* ) |
| 12 | eqid | ⊢ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } = { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } | |
| 13 | 12 8 | rabexd | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑢 ∈ 𝑉 ) → { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ∈ V ) |
| 14 | hashxnn0 | ⊢ ( { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ∈ V → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ) ∈ ℕ0* ) | |
| 15 | 13 14 | syl | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑢 ∈ 𝑉 ) → ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ) ∈ ℕ0* ) |
| 16 | xnn0xaddcl | ⊢ ( ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) ∈ ℕ0* ∧ ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ) ∈ ℕ0* ) → ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ∈ ℕ0* ) | |
| 17 | 11 15 16 | syl2anc | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ 𝑢 ∈ 𝑉 ) → ( ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ 𝑢 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) } ) +𝑒 ( ♯ ‘ { 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∣ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑢 } } ) ) ∈ ℕ0* ) |
| 18 | 4 17 | fmpt3d | ⊢ ( 𝐺 ∈ 𝑊 → ( VtxDeg ‘ 𝐺 ) : 𝑉 ⟶ ℕ0* ) |