This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The vertex degree function is a function from vertices to extended nonnegative integers. (Contributed by Alexander van der Vekens, 20-Dec-2017) (Revised by AV, 10-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | vtxdgf.v | |- V = ( Vtx ` G ) |
|
| Assertion | vtxdgf | |- ( G e. W -> ( VtxDeg ` G ) : V --> NN0* ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtxdgf.v | |- V = ( Vtx ` G ) |
|
| 2 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 3 | eqid | |- dom ( iEdg ` G ) = dom ( iEdg ` G ) |
|
| 4 | 1 2 3 | vtxdgfval | |- ( G e. W -> ( VtxDeg ` G ) = ( u e. V |-> ( ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) ) ) ) |
| 5 | eqid | |- { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } = { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } |
|
| 6 | fvex | |- ( iEdg ` G ) e. _V |
|
| 7 | dmexg | |- ( ( iEdg ` G ) e. _V -> dom ( iEdg ` G ) e. _V ) |
|
| 8 | 6 7 | mp1i | |- ( ( G e. W /\ u e. V ) -> dom ( iEdg ` G ) e. _V ) |
| 9 | 5 8 | rabexd | |- ( ( G e. W /\ u e. V ) -> { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } e. _V ) |
| 10 | hashxnn0 | |- ( { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } e. _V -> ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) e. NN0* ) |
|
| 11 | 9 10 | syl | |- ( ( G e. W /\ u e. V ) -> ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) e. NN0* ) |
| 12 | eqid | |- { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } = { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } |
|
| 13 | 12 8 | rabexd | |- ( ( G e. W /\ u e. V ) -> { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } e. _V ) |
| 14 | hashxnn0 | |- ( { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } e. _V -> ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) e. NN0* ) |
|
| 15 | 13 14 | syl | |- ( ( G e. W /\ u e. V ) -> ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) e. NN0* ) |
| 16 | xnn0xaddcl | |- ( ( ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) e. NN0* /\ ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) e. NN0* ) -> ( ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) ) e. NN0* ) |
|
| 17 | 11 15 16 | syl2anc | |- ( ( G e. W /\ u e. V ) -> ( ( # ` { x e. dom ( iEdg ` G ) | u e. ( ( iEdg ` G ) ` x ) } ) +e ( # ` { x e. dom ( iEdg ` G ) | ( ( iEdg ` G ) ` x ) = { u } } ) ) e. NN0* ) |
| 18 | 4 17 | fmpt3d | |- ( G e. W -> ( VtxDeg ` G ) : V --> NN0* ) |