This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of vtocl3gaf as of 31-May-2025. (Contributed by NM, 10-Aug-2013) (Revised by Mario Carneiro, 11-Oct-2016) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtocl3gaf.a | ⊢ Ⅎ 𝑥 𝐴 | |
| vtocl3gaf.b | ⊢ Ⅎ 𝑦 𝐴 | ||
| vtocl3gaf.c | ⊢ Ⅎ 𝑧 𝐴 | ||
| vtocl3gaf.d | ⊢ Ⅎ 𝑦 𝐵 | ||
| vtocl3gaf.e | ⊢ Ⅎ 𝑧 𝐵 | ||
| vtocl3gaf.f | ⊢ Ⅎ 𝑧 𝐶 | ||
| vtocl3gaf.1 | ⊢ Ⅎ 𝑥 𝜓 | ||
| vtocl3gaf.2 | ⊢ Ⅎ 𝑦 𝜒 | ||
| vtocl3gaf.3 | ⊢ Ⅎ 𝑧 𝜃 | ||
| vtocl3gaf.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| vtocl3gaf.5 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | ||
| vtocl3gaf.6 | ⊢ ( 𝑧 = 𝐶 → ( 𝜒 ↔ 𝜃 ) ) | ||
| vtocl3gaf.7 | ⊢ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) → 𝜑 ) | ||
| Assertion | vtocl3gafOLD | ⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl3gaf.a | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | vtocl3gaf.b | ⊢ Ⅎ 𝑦 𝐴 | |
| 3 | vtocl3gaf.c | ⊢ Ⅎ 𝑧 𝐴 | |
| 4 | vtocl3gaf.d | ⊢ Ⅎ 𝑦 𝐵 | |
| 5 | vtocl3gaf.e | ⊢ Ⅎ 𝑧 𝐵 | |
| 6 | vtocl3gaf.f | ⊢ Ⅎ 𝑧 𝐶 | |
| 7 | vtocl3gaf.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 8 | vtocl3gaf.2 | ⊢ Ⅎ 𝑦 𝜒 | |
| 9 | vtocl3gaf.3 | ⊢ Ⅎ 𝑧 𝜃 | |
| 10 | vtocl3gaf.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 11 | vtocl3gaf.5 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| 12 | vtocl3gaf.6 | ⊢ ( 𝑧 = 𝐶 → ( 𝜒 ↔ 𝜃 ) ) | |
| 13 | vtocl3gaf.7 | ⊢ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) → 𝜑 ) | |
| 14 | 1 | nfel1 | ⊢ Ⅎ 𝑥 𝐴 ∈ 𝑅 |
| 15 | nfv | ⊢ Ⅎ 𝑥 𝑦 ∈ 𝑆 | |
| 16 | nfv | ⊢ Ⅎ 𝑥 𝑧 ∈ 𝑇 | |
| 17 | 14 15 16 | nf3an | ⊢ Ⅎ 𝑥 ( 𝐴 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) |
| 18 | 17 7 | nfim | ⊢ Ⅎ 𝑥 ( ( 𝐴 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) → 𝜓 ) |
| 19 | 2 | nfel1 | ⊢ Ⅎ 𝑦 𝐴 ∈ 𝑅 |
| 20 | 4 | nfel1 | ⊢ Ⅎ 𝑦 𝐵 ∈ 𝑆 |
| 21 | nfv | ⊢ Ⅎ 𝑦 𝑧 ∈ 𝑇 | |
| 22 | 19 20 21 | nf3an | ⊢ Ⅎ 𝑦 ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) |
| 23 | 22 8 | nfim | ⊢ Ⅎ 𝑦 ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) → 𝜒 ) |
| 24 | 3 | nfel1 | ⊢ Ⅎ 𝑧 𝐴 ∈ 𝑅 |
| 25 | 5 | nfel1 | ⊢ Ⅎ 𝑧 𝐵 ∈ 𝑆 |
| 26 | 6 | nfel1 | ⊢ Ⅎ 𝑧 𝐶 ∈ 𝑇 |
| 27 | 24 25 26 | nf3an | ⊢ Ⅎ 𝑧 ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) |
| 28 | 27 9 | nfim | ⊢ Ⅎ 𝑧 ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → 𝜃 ) |
| 29 | eleq1 | ⊢ ( 𝑥 = 𝐴 → ( 𝑥 ∈ 𝑅 ↔ 𝐴 ∈ 𝑅 ) ) | |
| 30 | 29 | 3anbi1d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ↔ ( 𝐴 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ) ) |
| 31 | 30 10 | imbi12d | ⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) → 𝜑 ) ↔ ( ( 𝐴 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) → 𝜓 ) ) ) |
| 32 | eleq1 | ⊢ ( 𝑦 = 𝐵 → ( 𝑦 ∈ 𝑆 ↔ 𝐵 ∈ 𝑆 ) ) | |
| 33 | 32 | 3anbi2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ↔ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ) ) |
| 34 | 33 11 | imbi12d | ⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) → 𝜓 ) ↔ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) → 𝜒 ) ) ) |
| 35 | eleq1 | ⊢ ( 𝑧 = 𝐶 → ( 𝑧 ∈ 𝑇 ↔ 𝐶 ∈ 𝑇 ) ) | |
| 36 | 35 | 3anbi3d | ⊢ ( 𝑧 = 𝐶 → ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) ↔ ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) ) ) |
| 37 | 36 12 | imbi12d | ⊢ ( 𝑧 = 𝐶 → ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) → 𝜒 ) ↔ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → 𝜃 ) ) ) |
| 38 | 1 2 3 4 5 6 18 23 28 31 34 37 13 | vtocl3gf | ⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → 𝜃 ) ) |
| 39 | 38 | pm2.43i | ⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → 𝜃 ) |