This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution of a class for a setvar variable. (Contributed by NM, 10-Aug-2013) (Revised by Mario Carneiro, 10-Oct-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtocl3gf.a | ⊢ Ⅎ 𝑥 𝐴 | |
| vtocl3gf.b | ⊢ Ⅎ 𝑦 𝐴 | ||
| vtocl3gf.c | ⊢ Ⅎ 𝑧 𝐴 | ||
| vtocl3gf.d | ⊢ Ⅎ 𝑦 𝐵 | ||
| vtocl3gf.e | ⊢ Ⅎ 𝑧 𝐵 | ||
| vtocl3gf.f | ⊢ Ⅎ 𝑧 𝐶 | ||
| vtocl3gf.1 | ⊢ Ⅎ 𝑥 𝜓 | ||
| vtocl3gf.2 | ⊢ Ⅎ 𝑦 𝜒 | ||
| vtocl3gf.3 | ⊢ Ⅎ 𝑧 𝜃 | ||
| vtocl3gf.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| vtocl3gf.5 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | ||
| vtocl3gf.6 | ⊢ ( 𝑧 = 𝐶 → ( 𝜒 ↔ 𝜃 ) ) | ||
| vtocl3gf.7 | ⊢ 𝜑 | ||
| Assertion | vtocl3gf | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl3gf.a | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | vtocl3gf.b | ⊢ Ⅎ 𝑦 𝐴 | |
| 3 | vtocl3gf.c | ⊢ Ⅎ 𝑧 𝐴 | |
| 4 | vtocl3gf.d | ⊢ Ⅎ 𝑦 𝐵 | |
| 5 | vtocl3gf.e | ⊢ Ⅎ 𝑧 𝐵 | |
| 6 | vtocl3gf.f | ⊢ Ⅎ 𝑧 𝐶 | |
| 7 | vtocl3gf.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 8 | vtocl3gf.2 | ⊢ Ⅎ 𝑦 𝜒 | |
| 9 | vtocl3gf.3 | ⊢ Ⅎ 𝑧 𝜃 | |
| 10 | vtocl3gf.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 11 | vtocl3gf.5 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| 12 | vtocl3gf.6 | ⊢ ( 𝑧 = 𝐶 → ( 𝜒 ↔ 𝜃 ) ) | |
| 13 | vtocl3gf.7 | ⊢ 𝜑 | |
| 14 | elex | ⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) | |
| 15 | 2 | nfel1 | ⊢ Ⅎ 𝑦 𝐴 ∈ V |
| 16 | 15 8 | nfim | ⊢ Ⅎ 𝑦 ( 𝐴 ∈ V → 𝜒 ) |
| 17 | 3 | nfel1 | ⊢ Ⅎ 𝑧 𝐴 ∈ V |
| 18 | 17 9 | nfim | ⊢ Ⅎ 𝑧 ( 𝐴 ∈ V → 𝜃 ) |
| 19 | 11 | imbi2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 ∈ V → 𝜓 ) ↔ ( 𝐴 ∈ V → 𝜒 ) ) ) |
| 20 | 12 | imbi2d | ⊢ ( 𝑧 = 𝐶 → ( ( 𝐴 ∈ V → 𝜒 ) ↔ ( 𝐴 ∈ V → 𝜃 ) ) ) |
| 21 | 1 7 10 13 | vtoclgf | ⊢ ( 𝐴 ∈ V → 𝜓 ) |
| 22 | 4 5 6 16 18 19 20 21 | vtocl2gf | ⊢ ( ( 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐴 ∈ V → 𝜃 ) ) |
| 23 | 14 22 | mpan9 | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) ) → 𝜃 ) |
| 24 | 23 | 3impb | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋 ) → 𝜃 ) |