This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 10-Aug-2013) (Revised by Mario Carneiro, 11-Oct-2016) (Proof shortened by Wolf Lammen, 31-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtocl3gaf.a | ⊢ Ⅎ 𝑥 𝐴 | |
| vtocl3gaf.b | ⊢ Ⅎ 𝑦 𝐴 | ||
| vtocl3gaf.c | ⊢ Ⅎ 𝑧 𝐴 | ||
| vtocl3gaf.d | ⊢ Ⅎ 𝑦 𝐵 | ||
| vtocl3gaf.e | ⊢ Ⅎ 𝑧 𝐵 | ||
| vtocl3gaf.f | ⊢ Ⅎ 𝑧 𝐶 | ||
| vtocl3gaf.1 | ⊢ Ⅎ 𝑥 𝜓 | ||
| vtocl3gaf.2 | ⊢ Ⅎ 𝑦 𝜒 | ||
| vtocl3gaf.3 | ⊢ Ⅎ 𝑧 𝜃 | ||
| vtocl3gaf.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | ||
| vtocl3gaf.5 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | ||
| vtocl3gaf.6 | ⊢ ( 𝑧 = 𝐶 → ( 𝜒 ↔ 𝜃 ) ) | ||
| vtocl3gaf.7 | ⊢ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) → 𝜑 ) | ||
| Assertion | vtocl3gaf | ⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl3gaf.a | ⊢ Ⅎ 𝑥 𝐴 | |
| 2 | vtocl3gaf.b | ⊢ Ⅎ 𝑦 𝐴 | |
| 3 | vtocl3gaf.c | ⊢ Ⅎ 𝑧 𝐴 | |
| 4 | vtocl3gaf.d | ⊢ Ⅎ 𝑦 𝐵 | |
| 5 | vtocl3gaf.e | ⊢ Ⅎ 𝑧 𝐵 | |
| 6 | vtocl3gaf.f | ⊢ Ⅎ 𝑧 𝐶 | |
| 7 | vtocl3gaf.1 | ⊢ Ⅎ 𝑥 𝜓 | |
| 8 | vtocl3gaf.2 | ⊢ Ⅎ 𝑦 𝜒 | |
| 9 | vtocl3gaf.3 | ⊢ Ⅎ 𝑧 𝜃 | |
| 10 | vtocl3gaf.4 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 11 | vtocl3gaf.5 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| 12 | vtocl3gaf.6 | ⊢ ( 𝑧 = 𝐶 → ( 𝜒 ↔ 𝜃 ) ) | |
| 13 | vtocl3gaf.7 | ⊢ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ∧ 𝑧 ∈ 𝑇 ) → 𝜑 ) | |
| 14 | 3 | nfel1 | ⊢ Ⅎ 𝑧 𝐴 ∈ 𝑅 |
| 15 | 5 | nfel1 | ⊢ Ⅎ 𝑧 𝐵 ∈ 𝑆 |
| 16 | 14 15 | nfan | ⊢ Ⅎ 𝑧 ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) |
| 17 | 16 9 | nfim | ⊢ Ⅎ 𝑧 ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → 𝜃 ) |
| 18 | 12 | imbi2d | ⊢ ( 𝑧 = 𝐶 → ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → 𝜒 ) ↔ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → 𝜃 ) ) ) |
| 19 | nfv | ⊢ Ⅎ 𝑥 𝑧 ∈ 𝑇 | |
| 20 | 19 7 | nfim | ⊢ Ⅎ 𝑥 ( 𝑧 ∈ 𝑇 → 𝜓 ) |
| 21 | nfv | ⊢ Ⅎ 𝑦 𝑧 ∈ 𝑇 | |
| 22 | 21 8 | nfim | ⊢ Ⅎ 𝑦 ( 𝑧 ∈ 𝑇 → 𝜒 ) |
| 23 | 10 | imbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑧 ∈ 𝑇 → 𝜑 ) ↔ ( 𝑧 ∈ 𝑇 → 𝜓 ) ) ) |
| 24 | 11 | imbi2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝑧 ∈ 𝑇 → 𝜓 ) ↔ ( 𝑧 ∈ 𝑇 → 𝜒 ) ) ) |
| 25 | 13 | 3expia | ⊢ ( ( 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑧 ∈ 𝑇 → 𝜑 ) ) |
| 26 | 1 2 4 20 22 23 24 25 | vtocl2gaf | ⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → ( 𝑧 ∈ 𝑇 → 𝜒 ) ) |
| 27 | 26 | com12 | ⊢ ( 𝑧 ∈ 𝑇 → ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → 𝜒 ) ) |
| 28 | 6 17 18 27 | vtoclgaf | ⊢ ( 𝐶 ∈ 𝑇 → ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) → 𝜃 ) ) |
| 29 | 28 | impcom | ⊢ ( ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ) ∧ 𝐶 ∈ 𝑇 ) → 𝜃 ) |
| 30 | 29 | 3impa | ⊢ ( ( 𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇 ) → 𝜃 ) |