This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implicit substitution of 3 classes for 3 setvar variables. (Contributed by NM, 20-Aug-1995) Reduce axiom usage. (Revised by GG, 3-Oct-2024) (Proof shortened by Wolf Lammen, 31-May-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtocl3ga.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| vtocl3ga.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | ||
| vtocl3ga.3 | ⊢ ( 𝑧 = 𝐶 → ( 𝜒 ↔ 𝜃 ) ) | ||
| vtocl3ga.4 | ⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆 ) → 𝜑 ) | ||
| Assertion | vtocl3ga | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆 ) → 𝜃 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl3ga.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | vtocl3ga.2 | ⊢ ( 𝑦 = 𝐵 → ( 𝜓 ↔ 𝜒 ) ) | |
| 3 | vtocl3ga.3 | ⊢ ( 𝑧 = 𝐶 → ( 𝜒 ↔ 𝜃 ) ) | |
| 4 | vtocl3ga.4 | ⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ∧ 𝑧 ∈ 𝑆 ) → 𝜑 ) | |
| 5 | 3 | imbi2d | ⊢ ( 𝑧 = 𝐶 → ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ) → 𝜒 ) ↔ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ) → 𝜃 ) ) ) |
| 6 | 1 | imbi2d | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑧 ∈ 𝑆 → 𝜑 ) ↔ ( 𝑧 ∈ 𝑆 → 𝜓 ) ) ) |
| 7 | 2 | imbi2d | ⊢ ( 𝑦 = 𝐵 → ( ( 𝑧 ∈ 𝑆 → 𝜓 ) ↔ ( 𝑧 ∈ 𝑆 → 𝜒 ) ) ) |
| 8 | 4 | 3expia | ⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝑅 ) → ( 𝑧 ∈ 𝑆 → 𝜑 ) ) |
| 9 | 6 7 8 | vtocl2ga | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ) → ( 𝑧 ∈ 𝑆 → 𝜒 ) ) |
| 10 | 9 | com12 | ⊢ ( 𝑧 ∈ 𝑆 → ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ) → 𝜒 ) ) |
| 11 | 5 10 | vtoclga | ⊢ ( 𝐶 ∈ 𝑆 → ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ) → 𝜃 ) ) |
| 12 | 11 | impcom | ⊢ ( ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ) ∧ 𝐶 ∈ 𝑆 ) → 𝜃 ) |
| 13 | 12 | 3impa | ⊢ ( ( 𝐴 ∈ 𝐷 ∧ 𝐵 ∈ 𝑅 ∧ 𝐶 ∈ 𝑆 ) → 𝜃 ) |