This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of vtocl3gaf as of 31-May-2025. (Contributed by NM, 10-Aug-2013) (Revised by Mario Carneiro, 11-Oct-2016) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vtocl3gaf.a | |- F/_ x A |
|
| vtocl3gaf.b | |- F/_ y A |
||
| vtocl3gaf.c | |- F/_ z A |
||
| vtocl3gaf.d | |- F/_ y B |
||
| vtocl3gaf.e | |- F/_ z B |
||
| vtocl3gaf.f | |- F/_ z C |
||
| vtocl3gaf.1 | |- F/ x ps |
||
| vtocl3gaf.2 | |- F/ y ch |
||
| vtocl3gaf.3 | |- F/ z th |
||
| vtocl3gaf.4 | |- ( x = A -> ( ph <-> ps ) ) |
||
| vtocl3gaf.5 | |- ( y = B -> ( ps <-> ch ) ) |
||
| vtocl3gaf.6 | |- ( z = C -> ( ch <-> th ) ) |
||
| vtocl3gaf.7 | |- ( ( x e. R /\ y e. S /\ z e. T ) -> ph ) |
||
| Assertion | vtocl3gafOLD | |- ( ( A e. R /\ B e. S /\ C e. T ) -> th ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl3gaf.a | |- F/_ x A |
|
| 2 | vtocl3gaf.b | |- F/_ y A |
|
| 3 | vtocl3gaf.c | |- F/_ z A |
|
| 4 | vtocl3gaf.d | |- F/_ y B |
|
| 5 | vtocl3gaf.e | |- F/_ z B |
|
| 6 | vtocl3gaf.f | |- F/_ z C |
|
| 7 | vtocl3gaf.1 | |- F/ x ps |
|
| 8 | vtocl3gaf.2 | |- F/ y ch |
|
| 9 | vtocl3gaf.3 | |- F/ z th |
|
| 10 | vtocl3gaf.4 | |- ( x = A -> ( ph <-> ps ) ) |
|
| 11 | vtocl3gaf.5 | |- ( y = B -> ( ps <-> ch ) ) |
|
| 12 | vtocl3gaf.6 | |- ( z = C -> ( ch <-> th ) ) |
|
| 13 | vtocl3gaf.7 | |- ( ( x e. R /\ y e. S /\ z e. T ) -> ph ) |
|
| 14 | 1 | nfel1 | |- F/ x A e. R |
| 15 | nfv | |- F/ x y e. S |
|
| 16 | nfv | |- F/ x z e. T |
|
| 17 | 14 15 16 | nf3an | |- F/ x ( A e. R /\ y e. S /\ z e. T ) |
| 18 | 17 7 | nfim | |- F/ x ( ( A e. R /\ y e. S /\ z e. T ) -> ps ) |
| 19 | 2 | nfel1 | |- F/ y A e. R |
| 20 | 4 | nfel1 | |- F/ y B e. S |
| 21 | nfv | |- F/ y z e. T |
|
| 22 | 19 20 21 | nf3an | |- F/ y ( A e. R /\ B e. S /\ z e. T ) |
| 23 | 22 8 | nfim | |- F/ y ( ( A e. R /\ B e. S /\ z e. T ) -> ch ) |
| 24 | 3 | nfel1 | |- F/ z A e. R |
| 25 | 5 | nfel1 | |- F/ z B e. S |
| 26 | 6 | nfel1 | |- F/ z C e. T |
| 27 | 24 25 26 | nf3an | |- F/ z ( A e. R /\ B e. S /\ C e. T ) |
| 28 | 27 9 | nfim | |- F/ z ( ( A e. R /\ B e. S /\ C e. T ) -> th ) |
| 29 | eleq1 | |- ( x = A -> ( x e. R <-> A e. R ) ) |
|
| 30 | 29 | 3anbi1d | |- ( x = A -> ( ( x e. R /\ y e. S /\ z e. T ) <-> ( A e. R /\ y e. S /\ z e. T ) ) ) |
| 31 | 30 10 | imbi12d | |- ( x = A -> ( ( ( x e. R /\ y e. S /\ z e. T ) -> ph ) <-> ( ( A e. R /\ y e. S /\ z e. T ) -> ps ) ) ) |
| 32 | eleq1 | |- ( y = B -> ( y e. S <-> B e. S ) ) |
|
| 33 | 32 | 3anbi2d | |- ( y = B -> ( ( A e. R /\ y e. S /\ z e. T ) <-> ( A e. R /\ B e. S /\ z e. T ) ) ) |
| 34 | 33 11 | imbi12d | |- ( y = B -> ( ( ( A e. R /\ y e. S /\ z e. T ) -> ps ) <-> ( ( A e. R /\ B e. S /\ z e. T ) -> ch ) ) ) |
| 35 | eleq1 | |- ( z = C -> ( z e. T <-> C e. T ) ) |
|
| 36 | 35 | 3anbi3d | |- ( z = C -> ( ( A e. R /\ B e. S /\ z e. T ) <-> ( A e. R /\ B e. S /\ C e. T ) ) ) |
| 37 | 36 12 | imbi12d | |- ( z = C -> ( ( ( A e. R /\ B e. S /\ z e. T ) -> ch ) <-> ( ( A e. R /\ B e. S /\ C e. T ) -> th ) ) ) |
| 38 | 1 2 3 4 5 6 18 23 28 31 34 37 13 | vtocl3gf | |- ( ( A e. R /\ B e. S /\ C e. T ) -> ( ( A e. R /\ B e. S /\ C e. T ) -> th ) ) |
| 39 | 38 | pm2.43i | |- ( ( A e. R /\ B e. S /\ C e. T ) -> th ) |