This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If an edge E which does not contain vertex U is added to a graph G (yielding a graph F ), the degree of U is the same in both graphs. (Contributed by AV, 2-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | p1evtxdeq.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| p1evtxdeq.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| p1evtxdeq.f | ⊢ ( 𝜑 → Fun 𝐼 ) | ||
| p1evtxdeq.fv | ⊢ ( 𝜑 → ( Vtx ‘ 𝐹 ) = 𝑉 ) | ||
| p1evtxdeq.fi | ⊢ ( 𝜑 → ( iEdg ‘ 𝐹 ) = ( 𝐼 ∪ { 〈 𝐾 , 𝐸 〉 } ) ) | ||
| p1evtxdeq.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑋 ) | ||
| p1evtxdeq.d | ⊢ ( 𝜑 → 𝐾 ∉ dom 𝐼 ) | ||
| p1evtxdeq.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | ||
| p1evtxdeq.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑌 ) | ||
| p1evtxdeq.n | ⊢ ( 𝜑 → 𝑈 ∉ 𝐸 ) | ||
| Assertion | p1evtxdeq | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | p1evtxdeq.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | p1evtxdeq.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | p1evtxdeq.f | ⊢ ( 𝜑 → Fun 𝐼 ) | |
| 4 | p1evtxdeq.fv | ⊢ ( 𝜑 → ( Vtx ‘ 𝐹 ) = 𝑉 ) | |
| 5 | p1evtxdeq.fi | ⊢ ( 𝜑 → ( iEdg ‘ 𝐹 ) = ( 𝐼 ∪ { 〈 𝐾 , 𝐸 〉 } ) ) | |
| 6 | p1evtxdeq.k | ⊢ ( 𝜑 → 𝐾 ∈ 𝑋 ) | |
| 7 | p1evtxdeq.d | ⊢ ( 𝜑 → 𝐾 ∉ dom 𝐼 ) | |
| 8 | p1evtxdeq.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑉 ) | |
| 9 | p1evtxdeq.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑌 ) | |
| 10 | p1evtxdeq.n | ⊢ ( 𝜑 → 𝑈 ∉ 𝐸 ) | |
| 11 | 1 2 3 4 5 6 7 8 9 | p1evtxdeqlem | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) +𝑒 ( ( VtxDeg ‘ 〈 𝑉 , { 〈 𝐾 , 𝐸 〉 } 〉 ) ‘ 𝑈 ) ) ) |
| 12 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 13 | snex | ⊢ { 〈 𝐾 , 𝐸 〉 } ∈ V | |
| 14 | 12 13 | pm3.2i | ⊢ ( 𝑉 ∈ V ∧ { 〈 𝐾 , 𝐸 〉 } ∈ V ) |
| 15 | opiedgfv | ⊢ ( ( 𝑉 ∈ V ∧ { 〈 𝐾 , 𝐸 〉 } ∈ V ) → ( iEdg ‘ 〈 𝑉 , { 〈 𝐾 , 𝐸 〉 } 〉 ) = { 〈 𝐾 , 𝐸 〉 } ) | |
| 16 | 14 15 | mp1i | ⊢ ( 𝜑 → ( iEdg ‘ 〈 𝑉 , { 〈 𝐾 , 𝐸 〉 } 〉 ) = { 〈 𝐾 , 𝐸 〉 } ) |
| 17 | opvtxfv | ⊢ ( ( 𝑉 ∈ V ∧ { 〈 𝐾 , 𝐸 〉 } ∈ V ) → ( Vtx ‘ 〈 𝑉 , { 〈 𝐾 , 𝐸 〉 } 〉 ) = 𝑉 ) | |
| 18 | 14 17 | mp1i | ⊢ ( 𝜑 → ( Vtx ‘ 〈 𝑉 , { 〈 𝐾 , 𝐸 〉 } 〉 ) = 𝑉 ) |
| 19 | 16 18 6 8 9 10 | 1hevtxdg0 | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 〈 𝑉 , { 〈 𝐾 , 𝐸 〉 } 〉 ) ‘ 𝑈 ) = 0 ) |
| 20 | 19 | oveq2d | ⊢ ( 𝜑 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) +𝑒 ( ( VtxDeg ‘ 〈 𝑉 , { 〈 𝐾 , 𝐸 〉 } 〉 ) ‘ 𝑈 ) ) = ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) +𝑒 0 ) ) |
| 21 | 1 | vtxdgelxnn0 | ⊢ ( 𝑈 ∈ 𝑉 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ∈ ℕ0* ) |
| 22 | xnn0xr | ⊢ ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ∈ ℕ0* → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ∈ ℝ* ) | |
| 23 | 8 21 22 | 3syl | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ∈ ℝ* ) |
| 24 | 23 | xaddridd | ⊢ ( 𝜑 → ( ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) +𝑒 0 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ) |
| 25 | 11 20 24 | 3eqtrd | ⊢ ( 𝜑 → ( ( VtxDeg ‘ 𝐹 ) ‘ 𝑈 ) = ( ( VtxDeg ‘ 𝐺 ) ‘ 𝑈 ) ) |