This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Induction on the upper integers that startafter an integer M . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 25-Jul-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uzind2.1 | ⊢ ( 𝑗 = ( 𝑀 + 1 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| uzind2.2 | ⊢ ( 𝑗 = 𝑘 → ( 𝜑 ↔ 𝜒 ) ) | ||
| uzind2.3 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝜑 ↔ 𝜃 ) ) | ||
| uzind2.4 | ⊢ ( 𝑗 = 𝑁 → ( 𝜑 ↔ 𝜏 ) ) | ||
| uzind2.5 | ⊢ ( 𝑀 ∈ ℤ → 𝜓 ) | ||
| uzind2.6 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 < 𝑘 ) → ( 𝜒 → 𝜃 ) ) | ||
| Assertion | uzind2 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁 ) → 𝜏 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzind2.1 | ⊢ ( 𝑗 = ( 𝑀 + 1 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | uzind2.2 | ⊢ ( 𝑗 = 𝑘 → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | uzind2.3 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝜑 ↔ 𝜃 ) ) | |
| 4 | uzind2.4 | ⊢ ( 𝑗 = 𝑁 → ( 𝜑 ↔ 𝜏 ) ) | |
| 5 | uzind2.5 | ⊢ ( 𝑀 ∈ ℤ → 𝜓 ) | |
| 6 | uzind2.6 | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ 𝑀 < 𝑘 ) → ( 𝜒 → 𝜃 ) ) | |
| 7 | zltp1le | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁 ↔ ( 𝑀 + 1 ) ≤ 𝑁 ) ) | |
| 8 | peano2z | ⊢ ( 𝑀 ∈ ℤ → ( 𝑀 + 1 ) ∈ ℤ ) | |
| 9 | 1 | imbi2d | ⊢ ( 𝑗 = ( 𝑀 + 1 ) → ( ( 𝑀 ∈ ℤ → 𝜑 ) ↔ ( 𝑀 ∈ ℤ → 𝜓 ) ) ) |
| 10 | 2 | imbi2d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝑀 ∈ ℤ → 𝜑 ) ↔ ( 𝑀 ∈ ℤ → 𝜒 ) ) ) |
| 11 | 3 | imbi2d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝑀 ∈ ℤ → 𝜑 ) ↔ ( 𝑀 ∈ ℤ → 𝜃 ) ) ) |
| 12 | 4 | imbi2d | ⊢ ( 𝑗 = 𝑁 → ( ( 𝑀 ∈ ℤ → 𝜑 ) ↔ ( 𝑀 ∈ ℤ → 𝜏 ) ) ) |
| 13 | 5 | a1i | ⊢ ( ( 𝑀 + 1 ) ∈ ℤ → ( 𝑀 ∈ ℤ → 𝜓 ) ) |
| 14 | zltp1le | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑀 < 𝑘 ↔ ( 𝑀 + 1 ) ≤ 𝑘 ) ) | |
| 15 | 6 | 3expia | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝑀 < 𝑘 → ( 𝜒 → 𝜃 ) ) ) |
| 16 | 14 15 | sylbird | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( 𝑀 + 1 ) ≤ 𝑘 → ( 𝜒 → 𝜃 ) ) ) |
| 17 | 16 | ex | ⊢ ( 𝑀 ∈ ℤ → ( 𝑘 ∈ ℤ → ( ( 𝑀 + 1 ) ≤ 𝑘 → ( 𝜒 → 𝜃 ) ) ) ) |
| 18 | 17 | com3l | ⊢ ( 𝑘 ∈ ℤ → ( ( 𝑀 + 1 ) ≤ 𝑘 → ( 𝑀 ∈ ℤ → ( 𝜒 → 𝜃 ) ) ) ) |
| 19 | 18 | imp | ⊢ ( ( 𝑘 ∈ ℤ ∧ ( 𝑀 + 1 ) ≤ 𝑘 ) → ( 𝑀 ∈ ℤ → ( 𝜒 → 𝜃 ) ) ) |
| 20 | 19 | 3adant1 | ⊢ ( ( ( 𝑀 + 1 ) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ ( 𝑀 + 1 ) ≤ 𝑘 ) → ( 𝑀 ∈ ℤ → ( 𝜒 → 𝜃 ) ) ) |
| 21 | 20 | a2d | ⊢ ( ( ( 𝑀 + 1 ) ∈ ℤ ∧ 𝑘 ∈ ℤ ∧ ( 𝑀 + 1 ) ≤ 𝑘 ) → ( ( 𝑀 ∈ ℤ → 𝜒 ) → ( 𝑀 ∈ ℤ → 𝜃 ) ) ) |
| 22 | 9 10 11 12 13 21 | uzind | ⊢ ( ( ( 𝑀 + 1 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ ( 𝑀 + 1 ) ≤ 𝑁 ) → ( 𝑀 ∈ ℤ → 𝜏 ) ) |
| 23 | 22 | 3exp | ⊢ ( ( 𝑀 + 1 ) ∈ ℤ → ( 𝑁 ∈ ℤ → ( ( 𝑀 + 1 ) ≤ 𝑁 → ( 𝑀 ∈ ℤ → 𝜏 ) ) ) ) |
| 24 | 8 23 | syl | ⊢ ( 𝑀 ∈ ℤ → ( 𝑁 ∈ ℤ → ( ( 𝑀 + 1 ) ≤ 𝑁 → ( 𝑀 ∈ ℤ → 𝜏 ) ) ) ) |
| 25 | 24 | com34 | ⊢ ( 𝑀 ∈ ℤ → ( 𝑁 ∈ ℤ → ( 𝑀 ∈ ℤ → ( ( 𝑀 + 1 ) ≤ 𝑁 → 𝜏 ) ) ) ) |
| 26 | 25 | pm2.43a | ⊢ ( 𝑀 ∈ ℤ → ( 𝑁 ∈ ℤ → ( ( 𝑀 + 1 ) ≤ 𝑁 → 𝜏 ) ) ) |
| 27 | 26 | imp | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑀 + 1 ) ≤ 𝑁 → 𝜏 ) ) |
| 28 | 7 27 | sylbid | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 < 𝑁 → 𝜏 ) ) |
| 29 | 28 | 3impia | ⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 < 𝑁 ) → 𝜏 ) |