This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Induction on the upper integers that startafter an integer M . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by NM, 25-Jul-2005)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uzind2.1 | |- ( j = ( M + 1 ) -> ( ph <-> ps ) ) |
|
| uzind2.2 | |- ( j = k -> ( ph <-> ch ) ) |
||
| uzind2.3 | |- ( j = ( k + 1 ) -> ( ph <-> th ) ) |
||
| uzind2.4 | |- ( j = N -> ( ph <-> ta ) ) |
||
| uzind2.5 | |- ( M e. ZZ -> ps ) |
||
| uzind2.6 | |- ( ( M e. ZZ /\ k e. ZZ /\ M < k ) -> ( ch -> th ) ) |
||
| Assertion | uzind2 | |- ( ( M e. ZZ /\ N e. ZZ /\ M < N ) -> ta ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzind2.1 | |- ( j = ( M + 1 ) -> ( ph <-> ps ) ) |
|
| 2 | uzind2.2 | |- ( j = k -> ( ph <-> ch ) ) |
|
| 3 | uzind2.3 | |- ( j = ( k + 1 ) -> ( ph <-> th ) ) |
|
| 4 | uzind2.4 | |- ( j = N -> ( ph <-> ta ) ) |
|
| 5 | uzind2.5 | |- ( M e. ZZ -> ps ) |
|
| 6 | uzind2.6 | |- ( ( M e. ZZ /\ k e. ZZ /\ M < k ) -> ( ch -> th ) ) |
|
| 7 | zltp1le | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N <-> ( M + 1 ) <_ N ) ) |
|
| 8 | peano2z | |- ( M e. ZZ -> ( M + 1 ) e. ZZ ) |
|
| 9 | 1 | imbi2d | |- ( j = ( M + 1 ) -> ( ( M e. ZZ -> ph ) <-> ( M e. ZZ -> ps ) ) ) |
| 10 | 2 | imbi2d | |- ( j = k -> ( ( M e. ZZ -> ph ) <-> ( M e. ZZ -> ch ) ) ) |
| 11 | 3 | imbi2d | |- ( j = ( k + 1 ) -> ( ( M e. ZZ -> ph ) <-> ( M e. ZZ -> th ) ) ) |
| 12 | 4 | imbi2d | |- ( j = N -> ( ( M e. ZZ -> ph ) <-> ( M e. ZZ -> ta ) ) ) |
| 13 | 5 | a1i | |- ( ( M + 1 ) e. ZZ -> ( M e. ZZ -> ps ) ) |
| 14 | zltp1le | |- ( ( M e. ZZ /\ k e. ZZ ) -> ( M < k <-> ( M + 1 ) <_ k ) ) |
|
| 15 | 6 | 3expia | |- ( ( M e. ZZ /\ k e. ZZ ) -> ( M < k -> ( ch -> th ) ) ) |
| 16 | 14 15 | sylbird | |- ( ( M e. ZZ /\ k e. ZZ ) -> ( ( M + 1 ) <_ k -> ( ch -> th ) ) ) |
| 17 | 16 | ex | |- ( M e. ZZ -> ( k e. ZZ -> ( ( M + 1 ) <_ k -> ( ch -> th ) ) ) ) |
| 18 | 17 | com3l | |- ( k e. ZZ -> ( ( M + 1 ) <_ k -> ( M e. ZZ -> ( ch -> th ) ) ) ) |
| 19 | 18 | imp | |- ( ( k e. ZZ /\ ( M + 1 ) <_ k ) -> ( M e. ZZ -> ( ch -> th ) ) ) |
| 20 | 19 | 3adant1 | |- ( ( ( M + 1 ) e. ZZ /\ k e. ZZ /\ ( M + 1 ) <_ k ) -> ( M e. ZZ -> ( ch -> th ) ) ) |
| 21 | 20 | a2d | |- ( ( ( M + 1 ) e. ZZ /\ k e. ZZ /\ ( M + 1 ) <_ k ) -> ( ( M e. ZZ -> ch ) -> ( M e. ZZ -> th ) ) ) |
| 22 | 9 10 11 12 13 21 | uzind | |- ( ( ( M + 1 ) e. ZZ /\ N e. ZZ /\ ( M + 1 ) <_ N ) -> ( M e. ZZ -> ta ) ) |
| 23 | 22 | 3exp | |- ( ( M + 1 ) e. ZZ -> ( N e. ZZ -> ( ( M + 1 ) <_ N -> ( M e. ZZ -> ta ) ) ) ) |
| 24 | 8 23 | syl | |- ( M e. ZZ -> ( N e. ZZ -> ( ( M + 1 ) <_ N -> ( M e. ZZ -> ta ) ) ) ) |
| 25 | 24 | com34 | |- ( M e. ZZ -> ( N e. ZZ -> ( M e. ZZ -> ( ( M + 1 ) <_ N -> ta ) ) ) ) |
| 26 | 25 | pm2.43a | |- ( M e. ZZ -> ( N e. ZZ -> ( ( M + 1 ) <_ N -> ta ) ) ) |
| 27 | 26 | imp | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M + 1 ) <_ N -> ta ) ) |
| 28 | 7 27 | sylbid | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M < N -> ta ) ) |
| 29 | 28 | 3impia | |- ( ( M e. ZZ /\ N e. ZZ /\ M < N ) -> ta ) |