This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Peano's inductive postulate for upper integers. (Contributed by NM, 6-Jul-2005) (Revised by Mario Carneiro, 25-Jul-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | peano5uzti | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 + 1 ) ∈ 𝐴 ) → { 𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘 } ⊆ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | ⊢ ( 𝑁 = if ( 𝑁 ∈ ℤ , 𝑁 , 1 ) → ( 𝑁 ∈ 𝐴 ↔ if ( 𝑁 ∈ ℤ , 𝑁 , 1 ) ∈ 𝐴 ) ) | |
| 2 | 1 | anbi1d | ⊢ ( 𝑁 = if ( 𝑁 ∈ ℤ , 𝑁 , 1 ) → ( ( 𝑁 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 + 1 ) ∈ 𝐴 ) ↔ ( if ( 𝑁 ∈ ℤ , 𝑁 , 1 ) ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 + 1 ) ∈ 𝐴 ) ) ) |
| 3 | breq1 | ⊢ ( 𝑁 = if ( 𝑁 ∈ ℤ , 𝑁 , 1 ) → ( 𝑁 ≤ 𝑘 ↔ if ( 𝑁 ∈ ℤ , 𝑁 , 1 ) ≤ 𝑘 ) ) | |
| 4 | 3 | rabbidv | ⊢ ( 𝑁 = if ( 𝑁 ∈ ℤ , 𝑁 , 1 ) → { 𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘 } = { 𝑘 ∈ ℤ ∣ if ( 𝑁 ∈ ℤ , 𝑁 , 1 ) ≤ 𝑘 } ) |
| 5 | 4 | sseq1d | ⊢ ( 𝑁 = if ( 𝑁 ∈ ℤ , 𝑁 , 1 ) → ( { 𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘 } ⊆ 𝐴 ↔ { 𝑘 ∈ ℤ ∣ if ( 𝑁 ∈ ℤ , 𝑁 , 1 ) ≤ 𝑘 } ⊆ 𝐴 ) ) |
| 6 | 2 5 | imbi12d | ⊢ ( 𝑁 = if ( 𝑁 ∈ ℤ , 𝑁 , 1 ) → ( ( ( 𝑁 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 + 1 ) ∈ 𝐴 ) → { 𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘 } ⊆ 𝐴 ) ↔ ( ( if ( 𝑁 ∈ ℤ , 𝑁 , 1 ) ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 + 1 ) ∈ 𝐴 ) → { 𝑘 ∈ ℤ ∣ if ( 𝑁 ∈ ℤ , 𝑁 , 1 ) ≤ 𝑘 } ⊆ 𝐴 ) ) ) |
| 7 | 1z | ⊢ 1 ∈ ℤ | |
| 8 | 7 | elimel | ⊢ if ( 𝑁 ∈ ℤ , 𝑁 , 1 ) ∈ ℤ |
| 9 | 8 | peano5uzi | ⊢ ( ( if ( 𝑁 ∈ ℤ , 𝑁 , 1 ) ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 + 1 ) ∈ 𝐴 ) → { 𝑘 ∈ ℤ ∣ if ( 𝑁 ∈ ℤ , 𝑁 , 1 ) ≤ 𝑘 } ⊆ 𝐴 ) |
| 10 | 6 9 | dedth | ⊢ ( 𝑁 ∈ ℤ → ( ( 𝑁 ∈ 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑥 + 1 ) ∈ 𝐴 ) → { 𝑘 ∈ ℤ ∣ 𝑁 ≤ 𝑘 } ⊆ 𝐴 ) ) |