This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A graph is a simple pseudograph iff it is a pseudograph and a simple hypergraph. (Contributed by AV, 30-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uspgrupgrushgr | ⊢ ( 𝐺 ∈ USPGraph ↔ ( 𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgrupgr | ⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ UPGraph ) | |
| 2 | uspgrushgr | ⊢ ( 𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph ) | |
| 3 | 1 2 | jca | ⊢ ( 𝐺 ∈ USPGraph → ( 𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph ) ) |
| 4 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 5 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 6 | 4 5 | ushgrf | ⊢ ( 𝐺 ∈ USHGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ) |
| 7 | edgval | ⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) | |
| 8 | upgredgss | ⊢ ( 𝐺 ∈ UPGraph → ( Edg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) | |
| 9 | 7 8 | eqsstrrid | ⊢ ( 𝐺 ∈ UPGraph → ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 10 | f1ssr | ⊢ ( ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∧ ran ( iEdg ‘ 𝐺 ) ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) | |
| 11 | 6 9 10 | syl2anr | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 12 | 4 5 | isuspgr | ⊢ ( 𝐺 ∈ UPGraph → ( 𝐺 ∈ USPGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph ) → ( 𝐺 ∈ USPGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) –1-1→ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
| 14 | 11 13 | mpbird | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph ) → 𝐺 ∈ USPGraph ) |
| 15 | 3 14 | impbii | ⊢ ( 𝐺 ∈ USPGraph ↔ ( 𝐺 ∈ UPGraph ∧ 𝐺 ∈ USHGraph ) ) |