This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A graph is a simple pseudograph iff it is a pseudograph and a simple hypergraph. (Contributed by AV, 30-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uspgrupgrushgr | |- ( G e. USPGraph <-> ( G e. UPGraph /\ G e. USHGraph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgrupgr | |- ( G e. USPGraph -> G e. UPGraph ) |
|
| 2 | uspgrushgr | |- ( G e. USPGraph -> G e. USHGraph ) |
|
| 3 | 1 2 | jca | |- ( G e. USPGraph -> ( G e. UPGraph /\ G e. USHGraph ) ) |
| 4 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 5 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 6 | 4 5 | ushgrf | |- ( G e. USHGraph -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( ~P ( Vtx ` G ) \ { (/) } ) ) |
| 7 | edgval | |- ( Edg ` G ) = ran ( iEdg ` G ) |
|
| 8 | upgredgss | |- ( G e. UPGraph -> ( Edg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
|
| 9 | 7 8 | eqsstrrid | |- ( G e. UPGraph -> ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 10 | f1ssr | |- ( ( ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> ( ~P ( Vtx ` G ) \ { (/) } ) /\ ran ( iEdg ` G ) C_ { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
|
| 11 | 6 9 10 | syl2anr | |- ( ( G e. UPGraph /\ G e. USHGraph ) -> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) |
| 12 | 4 5 | isuspgr | |- ( G e. UPGraph -> ( G e. USPGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
| 13 | 12 | adantr | |- ( ( G e. UPGraph /\ G e. USHGraph ) -> ( G e. USPGraph <-> ( iEdg ` G ) : dom ( iEdg ` G ) -1-1-> { x e. ( ~P ( Vtx ` G ) \ { (/) } ) | ( # ` x ) <_ 2 } ) ) |
| 14 | 11 13 | mpbird | |- ( ( G e. UPGraph /\ G e. USHGraph ) -> G e. USPGraph ) |
| 15 | 3 14 | impbii | |- ( G e. USPGraph <-> ( G e. UPGraph /\ G e. USHGraph ) ) |