This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For a vertex incident to an edge there is another vertex incident to the edge in a pseudograph. (Contributed by AV, 18-Oct-2020) (Revised by AV, 5-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgredg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| upgredg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | upgredg2vtx | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ 𝐴 ∈ 𝐶 ) → ∃ 𝑏 ∈ 𝑉 𝐶 = { 𝐴 , 𝑏 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgredg.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | upgredg.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | 1 2 | upgredg | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 𝐶 = { 𝑎 , 𝑐 } ) |
| 4 | 3 | 3adant3 | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ 𝐴 ∈ 𝐶 ) → ∃ 𝑎 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 𝐶 = { 𝑎 , 𝑐 } ) |
| 5 | elpr2elpr | ⊢ ( ( 𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ∧ 𝐴 ∈ { 𝑎 , 𝑐 } ) → ∃ 𝑏 ∈ 𝑉 { 𝑎 , 𝑐 } = { 𝐴 , 𝑏 } ) | |
| 6 | 5 | 3expia | ⊢ ( ( 𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝐴 ∈ { 𝑎 , 𝑐 } → ∃ 𝑏 ∈ 𝑉 { 𝑎 , 𝑐 } = { 𝐴 , 𝑏 } ) ) |
| 7 | eleq2 | ⊢ ( 𝐶 = { 𝑎 , 𝑐 } → ( 𝐴 ∈ 𝐶 ↔ 𝐴 ∈ { 𝑎 , 𝑐 } ) ) | |
| 8 | eqeq1 | ⊢ ( 𝐶 = { 𝑎 , 𝑐 } → ( 𝐶 = { 𝐴 , 𝑏 } ↔ { 𝑎 , 𝑐 } = { 𝐴 , 𝑏 } ) ) | |
| 9 | 8 | rexbidv | ⊢ ( 𝐶 = { 𝑎 , 𝑐 } → ( ∃ 𝑏 ∈ 𝑉 𝐶 = { 𝐴 , 𝑏 } ↔ ∃ 𝑏 ∈ 𝑉 { 𝑎 , 𝑐 } = { 𝐴 , 𝑏 } ) ) |
| 10 | 7 9 | imbi12d | ⊢ ( 𝐶 = { 𝑎 , 𝑐 } → ( ( 𝐴 ∈ 𝐶 → ∃ 𝑏 ∈ 𝑉 𝐶 = { 𝐴 , 𝑏 } ) ↔ ( 𝐴 ∈ { 𝑎 , 𝑐 } → ∃ 𝑏 ∈ 𝑉 { 𝑎 , 𝑐 } = { 𝐴 , 𝑏 } ) ) ) |
| 11 | 6 10 | imbitrrid | ⊢ ( 𝐶 = { 𝑎 , 𝑐 } → ( ( 𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝐴 ∈ 𝐶 → ∃ 𝑏 ∈ 𝑉 𝐶 = { 𝐴 , 𝑏 } ) ) ) |
| 12 | 11 | com13 | ⊢ ( 𝐴 ∈ 𝐶 → ( ( 𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝐶 = { 𝑎 , 𝑐 } → ∃ 𝑏 ∈ 𝑉 𝐶 = { 𝐴 , 𝑏 } ) ) ) |
| 13 | 12 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ 𝐴 ∈ 𝐶 ) → ( ( 𝑎 ∈ 𝑉 ∧ 𝑐 ∈ 𝑉 ) → ( 𝐶 = { 𝑎 , 𝑐 } → ∃ 𝑏 ∈ 𝑉 𝐶 = { 𝐴 , 𝑏 } ) ) ) |
| 14 | 13 | rexlimdvv | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ 𝐴 ∈ 𝐶 ) → ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑐 ∈ 𝑉 𝐶 = { 𝑎 , 𝑐 } → ∃ 𝑏 ∈ 𝑉 𝐶 = { 𝐴 , 𝑏 } ) ) |
| 15 | 4 14 | mpd | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐶 ∈ 𝐸 ∧ 𝐴 ∈ 𝐶 ) → ∃ 𝑏 ∈ 𝑉 𝐶 = { 𝐴 , 𝑏 } ) |