This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For a vertex incident to an edge there is exactly one other vertex incident to the edge in a simple pseudograph. (Contributed by AV, 18-Oct-2020) (Revised by AV, 6-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uspgredg2vtxeu | |- ( ( G e. USPGraph /\ E e. ( Edg ` G ) /\ Y e. E ) -> E! y e. ( Vtx ` G ) E = { Y , y } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uspgrupgr | |- ( G e. USPGraph -> G e. UPGraph ) |
|
| 2 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 3 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 4 | 2 3 | upgredg2vtx | |- ( ( G e. UPGraph /\ E e. ( Edg ` G ) /\ Y e. E ) -> E. y e. ( Vtx ` G ) E = { Y , y } ) |
| 5 | 1 4 | syl3an1 | |- ( ( G e. USPGraph /\ E e. ( Edg ` G ) /\ Y e. E ) -> E. y e. ( Vtx ` G ) E = { Y , y } ) |
| 6 | eqtr2 | |- ( ( E = { Y , y } /\ E = { Y , x } ) -> { Y , y } = { Y , x } ) |
|
| 7 | vex | |- y e. _V |
|
| 8 | vex | |- x e. _V |
|
| 9 | 7 8 | preqr2 | |- ( { Y , y } = { Y , x } -> y = x ) |
| 10 | 6 9 | syl | |- ( ( E = { Y , y } /\ E = { Y , x } ) -> y = x ) |
| 11 | 10 | a1i | |- ( ( ( G e. USPGraph /\ E e. ( Edg ` G ) /\ Y e. E ) /\ ( y e. ( Vtx ` G ) /\ x e. ( Vtx ` G ) ) ) -> ( ( E = { Y , y } /\ E = { Y , x } ) -> y = x ) ) |
| 12 | 11 | ralrimivva | |- ( ( G e. USPGraph /\ E e. ( Edg ` G ) /\ Y e. E ) -> A. y e. ( Vtx ` G ) A. x e. ( Vtx ` G ) ( ( E = { Y , y } /\ E = { Y , x } ) -> y = x ) ) |
| 13 | preq2 | |- ( y = x -> { Y , y } = { Y , x } ) |
|
| 14 | 13 | eqeq2d | |- ( y = x -> ( E = { Y , y } <-> E = { Y , x } ) ) |
| 15 | 14 | reu4 | |- ( E! y e. ( Vtx ` G ) E = { Y , y } <-> ( E. y e. ( Vtx ` G ) E = { Y , y } /\ A. y e. ( Vtx ` G ) A. x e. ( Vtx ` G ) ( ( E = { Y , y } /\ E = { Y , x } ) -> y = x ) ) ) |
| 16 | 5 12 15 | sylanbrc | |- ( ( G e. USPGraph /\ E e. ( Edg ` G ) /\ Y e. E ) -> E! y e. ( Vtx ` G ) E = { Y , y } ) |