This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of usgredgprv , using usgredg2 instead of umgredgprv . (Contributed by Alexander van der Vekens, 19-Aug-2017) (Revised by AV, 16-Oct-2020) (New usage is discouraged.) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgredg2.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| usgredgprv.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | ||
| Assertion | usgredgprvALT | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgredg2.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 2 | usgredgprv.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 3 | 1 2 | usgrss | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑋 ) ⊆ 𝑉 ) |
| 4 | 1 | usgredg2 | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 ) |
| 5 | sseq1 | ⊢ ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → ( ( 𝐸 ‘ 𝑋 ) ⊆ 𝑉 ↔ { 𝑀 , 𝑁 } ⊆ 𝑉 ) ) | |
| 6 | fveq2 | ⊢ ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = ( ♯ ‘ { 𝑀 , 𝑁 } ) ) | |
| 7 | 6 | eqeq1d | ⊢ ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → ( ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 ↔ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) ) |
| 8 | 5 7 | anbi12d | ⊢ ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → ( ( ( 𝐸 ‘ 𝑋 ) ⊆ 𝑉 ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 ) ↔ ( { 𝑀 , 𝑁 } ⊆ 𝑉 ∧ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) ) ) |
| 9 | eqid | ⊢ { 𝑀 , 𝑁 } = { 𝑀 , 𝑁 } | |
| 10 | 9 | hashprdifel | ⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( 𝑀 ∈ { 𝑀 , 𝑁 } ∧ 𝑁 ∈ { 𝑀 , 𝑁 } ∧ 𝑀 ≠ 𝑁 ) ) |
| 11 | prssg | ⊢ ( ( 𝑀 ∈ { 𝑀 , 𝑁 } ∧ 𝑁 ∈ { 𝑀 , 𝑁 } ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ↔ { 𝑀 , 𝑁 } ⊆ 𝑉 ) ) | |
| 12 | 11 | 3adant3 | ⊢ ( ( 𝑀 ∈ { 𝑀 , 𝑁 } ∧ 𝑁 ∈ { 𝑀 , 𝑁 } ∧ 𝑀 ≠ 𝑁 ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ↔ { 𝑀 , 𝑁 } ⊆ 𝑉 ) ) |
| 13 | 12 | biimprd | ⊢ ( ( 𝑀 ∈ { 𝑀 , 𝑁 } ∧ 𝑁 ∈ { 𝑀 , 𝑁 } ∧ 𝑀 ≠ 𝑁 ) → ( { 𝑀 , 𝑁 } ⊆ 𝑉 → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) |
| 14 | 10 13 | syl | ⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( { 𝑀 , 𝑁 } ⊆ 𝑉 → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) |
| 15 | 14 | impcom | ⊢ ( ( { 𝑀 , 𝑁 } ⊆ 𝑉 ∧ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) |
| 16 | 8 15 | biimtrdi | ⊢ ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → ( ( ( 𝐸 ‘ 𝑋 ) ⊆ 𝑉 ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 ) → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) |
| 17 | 16 | com12 | ⊢ ( ( ( 𝐸 ‘ 𝑋 ) ⊆ 𝑉 ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 ) → ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) |
| 18 | 3 4 17 | syl2anc | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) |