This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The elements of an unordered pair of size 2 are different sets. (Contributed by AV, 27-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | hashprdifel.s | ⊢ 𝑆 = { 𝐴 , 𝐵 } | |
| Assertion | hashprdifel | ⊢ ( ( ♯ ‘ 𝑆 ) = 2 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashprdifel.s | ⊢ 𝑆 = { 𝐴 , 𝐵 } | |
| 2 | 1 | fveq2i | ⊢ ( ♯ ‘ 𝑆 ) = ( ♯ ‘ { 𝐴 , 𝐵 } ) |
| 3 | 2 | eqeq1i | ⊢ ( ( ♯ ‘ 𝑆 ) = 2 ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) |
| 4 | hashprb | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) | |
| 5 | 3 4 | bitr4i | ⊢ ( ( ♯ ‘ 𝑆 ) = 2 ↔ ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) ) |
| 6 | prid1g | ⊢ ( 𝐴 ∈ V → 𝐴 ∈ { 𝐴 , 𝐵 } ) | |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ { 𝐴 , 𝐵 } ) |
| 8 | 7 1 | eleqtrrdi | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ∈ 𝑆 ) |
| 9 | prid2g | ⊢ ( 𝐵 ∈ V → 𝐵 ∈ { 𝐴 , 𝐵 } ) | |
| 10 | 9 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ { 𝐴 , 𝐵 } ) |
| 11 | 10 1 | eleqtrrdi | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) → 𝐵 ∈ 𝑆 ) |
| 12 | simp3 | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) → 𝐴 ≠ 𝐵 ) | |
| 13 | 8 11 12 | 3jca | ⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐴 ≠ 𝐵 ) → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) ) |
| 14 | 5 13 | sylbi | ⊢ ( ( ♯ ‘ 𝑆 ) = 2 → ( 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵 ) ) |