This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a multigraph, an edge is an unordered pair of vertices. This theorem would not hold for arbitrary hyper-/pseudographs since either M or N could be proper classes ( ( EX ) would be a loop in this case), which are no vertices of course. (Contributed by Alexander van der Vekens, 19-Aug-2017) (Revised by AV, 11-Dec-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | umgrnloopv.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| umgredgprv.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | ||
| Assertion | umgredgprv | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | umgrnloopv.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 2 | umgredgprv.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 3 | umgruhgr | ⊢ ( 𝐺 ∈ UMGraph → 𝐺 ∈ UHGraph ) | |
| 4 | 2 1 | uhgrss | ⊢ ( ( 𝐺 ∈ UHGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑋 ) ⊆ 𝑉 ) |
| 5 | 3 4 | sylan | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑋 ) ⊆ 𝑉 ) |
| 6 | 2 1 | umgredg2 | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 ) |
| 7 | sseq1 | ⊢ ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → ( ( 𝐸 ‘ 𝑋 ) ⊆ 𝑉 ↔ { 𝑀 , 𝑁 } ⊆ 𝑉 ) ) | |
| 8 | fveqeq2 | ⊢ ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → ( ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 ↔ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) ) | |
| 9 | 7 8 | anbi12d | ⊢ ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → ( ( ( 𝐸 ‘ 𝑋 ) ⊆ 𝑉 ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 ) ↔ ( { 𝑀 , 𝑁 } ⊆ 𝑉 ∧ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) ) ) |
| 10 | eqid | ⊢ { 𝑀 , 𝑁 } = { 𝑀 , 𝑁 } | |
| 11 | 10 | hashprdifel | ⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( 𝑀 ∈ { 𝑀 , 𝑁 } ∧ 𝑁 ∈ { 𝑀 , 𝑁 } ∧ 𝑀 ≠ 𝑁 ) ) |
| 12 | prssg | ⊢ ( ( 𝑀 ∈ { 𝑀 , 𝑁 } ∧ 𝑁 ∈ { 𝑀 , 𝑁 } ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ↔ { 𝑀 , 𝑁 } ⊆ 𝑉 ) ) | |
| 13 | 12 | 3adant3 | ⊢ ( ( 𝑀 ∈ { 𝑀 , 𝑁 } ∧ 𝑁 ∈ { 𝑀 , 𝑁 } ∧ 𝑀 ≠ 𝑁 ) → ( ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ↔ { 𝑀 , 𝑁 } ⊆ 𝑉 ) ) |
| 14 | 13 | biimprd | ⊢ ( ( 𝑀 ∈ { 𝑀 , 𝑁 } ∧ 𝑁 ∈ { 𝑀 , 𝑁 } ∧ 𝑀 ≠ 𝑁 ) → ( { 𝑀 , 𝑁 } ⊆ 𝑉 → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) |
| 15 | 11 14 | syl | ⊢ ( ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 → ( { 𝑀 , 𝑁 } ⊆ 𝑉 → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) |
| 16 | 15 | impcom | ⊢ ( ( { 𝑀 , 𝑁 } ⊆ 𝑉 ∧ ( ♯ ‘ { 𝑀 , 𝑁 } ) = 2 ) → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) |
| 17 | 9 16 | biimtrdi | ⊢ ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → ( ( ( 𝐸 ‘ 𝑋 ) ⊆ 𝑉 ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 ) → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) |
| 18 | 17 | com12 | ⊢ ( ( ( 𝐸 ‘ 𝑋 ) ⊆ 𝑉 ∧ ( ♯ ‘ ( 𝐸 ‘ 𝑋 ) ) = 2 ) → ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) |
| 19 | 5 6 18 | syl2anc | ⊢ ( ( 𝐺 ∈ UMGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( ( 𝐸 ‘ 𝑋 ) = { 𝑀 , 𝑁 } → ( 𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉 ) ) ) |