This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An edge is a subset of vertices. (Contributed by Alexander van der Vekens, 19-Aug-2017) (Revised by AV, 15-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | usgrf1o.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| usgrss.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | ||
| Assertion | usgrss | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑋 ) ⊆ 𝑉 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrf1o.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 2 | usgrss.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 3 | ssrab2 | ⊢ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ⊆ 𝒫 𝑉 | |
| 4 | 2 1 | usgrfs | ⊢ ( 𝐺 ∈ USGraph → 𝐸 : dom 𝐸 –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 5 | f1f | ⊢ ( 𝐸 : dom 𝐸 –1-1→ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } → 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐺 ∈ USGraph → 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 7 | 6 | ffvelcdmda | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑋 ) ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 8 | 3 7 | sselid | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑋 ) ∈ 𝒫 𝑉 ) |
| 9 | 8 | elpwid | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑋 ∈ dom 𝐸 ) → ( 𝐸 ‘ 𝑋 ) ⊆ 𝑉 ) |