This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of usgredg2vtxeu , using edgiedgb , the general translation from ( iEdgG ) to ( EdgG ) . (Contributed by AV, 18-Oct-2020) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | usgredg2vtxeuALT | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐸 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑌 ∈ 𝐸 ) → ∃! 𝑦 ∈ ( Vtx ‘ 𝐺 ) 𝐸 = { 𝑌 , 𝑦 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgruhgr | ⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UHGraph ) | |
| 2 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 3 | 2 | uhgredgiedgb | ⊢ ( 𝐺 ∈ UHGraph → ( 𝐸 ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝐸 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 4 | 1 3 | syl | ⊢ ( 𝐺 ∈ USGraph → ( 𝐸 ∈ ( Edg ‘ 𝐺 ) ↔ ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝐸 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) |
| 5 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 6 | 5 2 | usgredgreu | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝑌 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) → ∃! 𝑦 ∈ ( Vtx ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑌 , 𝑦 } ) |
| 7 | 6 | 3expia | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ) → ( 𝑌 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) → ∃! 𝑦 ∈ ( Vtx ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑌 , 𝑦 } ) ) |
| 8 | 7 | 3adant3 | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝐸 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) → ( 𝑌 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) → ∃! 𝑦 ∈ ( Vtx ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑌 , 𝑦 } ) ) |
| 9 | eleq2 | ⊢ ( 𝐸 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) → ( 𝑌 ∈ 𝐸 ↔ 𝑌 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) ) | |
| 10 | eqeq1 | ⊢ ( 𝐸 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) → ( 𝐸 = { 𝑌 , 𝑦 } ↔ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑌 , 𝑦 } ) ) | |
| 11 | 10 | reubidv | ⊢ ( 𝐸 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) → ( ∃! 𝑦 ∈ ( Vtx ‘ 𝐺 ) 𝐸 = { 𝑌 , 𝑦 } ↔ ∃! 𝑦 ∈ ( Vtx ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑌 , 𝑦 } ) ) |
| 12 | 9 11 | imbi12d | ⊢ ( 𝐸 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) → ( ( 𝑌 ∈ 𝐸 → ∃! 𝑦 ∈ ( Vtx ‘ 𝐺 ) 𝐸 = { 𝑌 , 𝑦 } ) ↔ ( 𝑌 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) → ∃! 𝑦 ∈ ( Vtx ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑌 , 𝑦 } ) ) ) |
| 13 | 12 | 3ad2ant3 | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝐸 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) → ( ( 𝑌 ∈ 𝐸 → ∃! 𝑦 ∈ ( Vtx ‘ 𝐺 ) 𝐸 = { 𝑌 , 𝑦 } ) ↔ ( 𝑌 ∈ ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) → ∃! 𝑦 ∈ ( Vtx ‘ 𝐺 ) ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) = { 𝑌 , 𝑦 } ) ) ) |
| 14 | 8 13 | mpbird | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) ∧ 𝐸 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) ) → ( 𝑌 ∈ 𝐸 → ∃! 𝑦 ∈ ( Vtx ‘ 𝐺 ) 𝐸 = { 𝑌 , 𝑦 } ) ) |
| 15 | 14 | 3exp | ⊢ ( 𝐺 ∈ USGraph → ( 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) → ( 𝐸 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) → ( 𝑌 ∈ 𝐸 → ∃! 𝑦 ∈ ( Vtx ‘ 𝐺 ) 𝐸 = { 𝑌 , 𝑦 } ) ) ) ) |
| 16 | 15 | rexlimdv | ⊢ ( 𝐺 ∈ USGraph → ( ∃ 𝑥 ∈ dom ( iEdg ‘ 𝐺 ) 𝐸 = ( ( iEdg ‘ 𝐺 ) ‘ 𝑥 ) → ( 𝑌 ∈ 𝐸 → ∃! 𝑦 ∈ ( Vtx ‘ 𝐺 ) 𝐸 = { 𝑌 , 𝑦 } ) ) ) |
| 17 | 4 16 | sylbid | ⊢ ( 𝐺 ∈ USGraph → ( 𝐸 ∈ ( Edg ‘ 𝐺 ) → ( 𝑌 ∈ 𝐸 → ∃! 𝑦 ∈ ( Vtx ‘ 𝐺 ) 𝐸 = { 𝑌 , 𝑦 } ) ) ) |
| 18 | 17 | 3imp | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝐸 ∈ ( Edg ‘ 𝐺 ) ∧ 𝑌 ∈ 𝐸 ) → ∃! 𝑦 ∈ ( Vtx ‘ 𝐺 ) 𝐸 = { 𝑌 , 𝑦 } ) |