This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of usgredg2vtxeu , using edgiedgb , the general translation from ( iEdgG ) to ( EdgG ) . (Contributed by AV, 18-Oct-2020) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | usgredg2vtxeuALT | |- ( ( G e. USGraph /\ E e. ( Edg ` G ) /\ Y e. E ) -> E! y e. ( Vtx ` G ) E = { Y , y } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgruhgr | |- ( G e. USGraph -> G e. UHGraph ) |
|
| 2 | eqid | |- ( iEdg ` G ) = ( iEdg ` G ) |
|
| 3 | 2 | uhgredgiedgb | |- ( G e. UHGraph -> ( E e. ( Edg ` G ) <-> E. x e. dom ( iEdg ` G ) E = ( ( iEdg ` G ) ` x ) ) ) |
| 4 | 1 3 | syl | |- ( G e. USGraph -> ( E e. ( Edg ` G ) <-> E. x e. dom ( iEdg ` G ) E = ( ( iEdg ` G ) ` x ) ) ) |
| 5 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 6 | 5 2 | usgredgreu | |- ( ( G e. USGraph /\ x e. dom ( iEdg ` G ) /\ Y e. ( ( iEdg ` G ) ` x ) ) -> E! y e. ( Vtx ` G ) ( ( iEdg ` G ) ` x ) = { Y , y } ) |
| 7 | 6 | 3expia | |- ( ( G e. USGraph /\ x e. dom ( iEdg ` G ) ) -> ( Y e. ( ( iEdg ` G ) ` x ) -> E! y e. ( Vtx ` G ) ( ( iEdg ` G ) ` x ) = { Y , y } ) ) |
| 8 | 7 | 3adant3 | |- ( ( G e. USGraph /\ x e. dom ( iEdg ` G ) /\ E = ( ( iEdg ` G ) ` x ) ) -> ( Y e. ( ( iEdg ` G ) ` x ) -> E! y e. ( Vtx ` G ) ( ( iEdg ` G ) ` x ) = { Y , y } ) ) |
| 9 | eleq2 | |- ( E = ( ( iEdg ` G ) ` x ) -> ( Y e. E <-> Y e. ( ( iEdg ` G ) ` x ) ) ) |
|
| 10 | eqeq1 | |- ( E = ( ( iEdg ` G ) ` x ) -> ( E = { Y , y } <-> ( ( iEdg ` G ) ` x ) = { Y , y } ) ) |
|
| 11 | 10 | reubidv | |- ( E = ( ( iEdg ` G ) ` x ) -> ( E! y e. ( Vtx ` G ) E = { Y , y } <-> E! y e. ( Vtx ` G ) ( ( iEdg ` G ) ` x ) = { Y , y } ) ) |
| 12 | 9 11 | imbi12d | |- ( E = ( ( iEdg ` G ) ` x ) -> ( ( Y e. E -> E! y e. ( Vtx ` G ) E = { Y , y } ) <-> ( Y e. ( ( iEdg ` G ) ` x ) -> E! y e. ( Vtx ` G ) ( ( iEdg ` G ) ` x ) = { Y , y } ) ) ) |
| 13 | 12 | 3ad2ant3 | |- ( ( G e. USGraph /\ x e. dom ( iEdg ` G ) /\ E = ( ( iEdg ` G ) ` x ) ) -> ( ( Y e. E -> E! y e. ( Vtx ` G ) E = { Y , y } ) <-> ( Y e. ( ( iEdg ` G ) ` x ) -> E! y e. ( Vtx ` G ) ( ( iEdg ` G ) ` x ) = { Y , y } ) ) ) |
| 14 | 8 13 | mpbird | |- ( ( G e. USGraph /\ x e. dom ( iEdg ` G ) /\ E = ( ( iEdg ` G ) ` x ) ) -> ( Y e. E -> E! y e. ( Vtx ` G ) E = { Y , y } ) ) |
| 15 | 14 | 3exp | |- ( G e. USGraph -> ( x e. dom ( iEdg ` G ) -> ( E = ( ( iEdg ` G ) ` x ) -> ( Y e. E -> E! y e. ( Vtx ` G ) E = { Y , y } ) ) ) ) |
| 16 | 15 | rexlimdv | |- ( G e. USGraph -> ( E. x e. dom ( iEdg ` G ) E = ( ( iEdg ` G ) ` x ) -> ( Y e. E -> E! y e. ( Vtx ` G ) E = { Y , y } ) ) ) |
| 17 | 4 16 | sylbid | |- ( G e. USGraph -> ( E e. ( Edg ` G ) -> ( Y e. E -> E! y e. ( Vtx ` G ) E = { Y , y } ) ) ) |
| 18 | 17 | 3imp | |- ( ( G e. USGraph /\ E e. ( Edg ` G ) /\ Y e. E ) -> E! y e. ( Vtx ` G ) E = { Y , y } ) |