This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A class with one (or no) vertex is a simple graph if and only if it has no edges. (Contributed by Alexander van der Vekens, 13-Oct-2017) (Revised by AV, 18-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | usgr1v | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) → ( 𝐺 ∈ USGraph ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgr1vr | ⊢ ( ( 𝐴 ∈ V ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) → ( 𝐺 ∈ USGraph → ( iEdg ‘ 𝐺 ) = ∅ ) ) | |
| 2 | 1 | adantrl | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) ) → ( 𝐺 ∈ USGraph → ( iEdg ‘ 𝐺 ) = ∅ ) ) |
| 3 | simplrl | ⊢ ( ( ( 𝐴 ∈ V ∧ ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) ) ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → 𝐺 ∈ 𝑊 ) | |
| 4 | simpr | ⊢ ( ( ( 𝐴 ∈ V ∧ ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) ) ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → ( iEdg ‘ 𝐺 ) = ∅ ) | |
| 5 | 3 4 | usgr0e | ⊢ ( ( ( 𝐴 ∈ V ∧ ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) ) ∧ ( iEdg ‘ 𝐺 ) = ∅ ) → 𝐺 ∈ USGraph ) |
| 6 | 5 | ex | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) ) → ( ( iEdg ‘ 𝐺 ) = ∅ → 𝐺 ∈ USGraph ) ) |
| 7 | 2 6 | impbid | ⊢ ( ( 𝐴 ∈ V ∧ ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) ) → ( 𝐺 ∈ USGraph ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |
| 8 | 7 | ex | ⊢ ( 𝐴 ∈ V → ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) → ( 𝐺 ∈ USGraph ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) ) |
| 9 | snprc | ⊢ ( ¬ 𝐴 ∈ V ↔ { 𝐴 } = ∅ ) | |
| 10 | simpl | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) → 𝐺 ∈ 𝑊 ) | |
| 11 | simprr | ⊢ ( ( { 𝐴 } = ∅ ∧ ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) ) → ( Vtx ‘ 𝐺 ) = { 𝐴 } ) | |
| 12 | simpl | ⊢ ( ( { 𝐴 } = ∅ ∧ ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) ) → { 𝐴 } = ∅ ) | |
| 13 | 11 12 | eqtrd | ⊢ ( ( { 𝐴 } = ∅ ∧ ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) ) → ( Vtx ‘ 𝐺 ) = ∅ ) |
| 14 | usgr0vb | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = ∅ ) → ( 𝐺 ∈ USGraph ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) | |
| 15 | 10 13 14 | syl2an2 | ⊢ ( ( { 𝐴 } = ∅ ∧ ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) ) → ( 𝐺 ∈ USGraph ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |
| 16 | 15 | ex | ⊢ ( { 𝐴 } = ∅ → ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) → ( 𝐺 ∈ USGraph ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) ) |
| 17 | 9 16 | sylbi | ⊢ ( ¬ 𝐴 ∈ V → ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) → ( 𝐺 ∈ USGraph ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) ) |
| 18 | 8 17 | pm2.61i | ⊢ ( ( 𝐺 ∈ 𝑊 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) → ( 𝐺 ∈ USGraph ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |