This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of a (finite) simple graph with 1 vertex is 0. (Contributed by Alexander van der Vekens, 5-Jan-2018) (Revised by AV, 22-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fusgredgfi.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| fusgredgfi.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | usgr1v0e | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ) → ( ♯ ‘ 𝐸 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fusgredgfi.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | fusgredgfi.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | simpl | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑉 = { 𝑣 } ) → 𝐺 ∈ USGraph ) | |
| 4 | vex | ⊢ 𝑣 ∈ V | |
| 5 | 1 | eqeq1i | ⊢ ( 𝑉 = { 𝑣 } ↔ ( Vtx ‘ 𝐺 ) = { 𝑣 } ) |
| 6 | 5 | biimpi | ⊢ ( 𝑉 = { 𝑣 } → ( Vtx ‘ 𝐺 ) = { 𝑣 } ) |
| 7 | 6 | adantl | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑉 = { 𝑣 } ) → ( Vtx ‘ 𝐺 ) = { 𝑣 } ) |
| 8 | usgr1vr | ⊢ ( ( 𝑣 ∈ V ∧ ( Vtx ‘ 𝐺 ) = { 𝑣 } ) → ( 𝐺 ∈ USGraph → ( iEdg ‘ 𝐺 ) = ∅ ) ) | |
| 9 | 4 7 8 | sylancr | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑉 = { 𝑣 } ) → ( 𝐺 ∈ USGraph → ( iEdg ‘ 𝐺 ) = ∅ ) ) |
| 10 | 3 9 | mpd | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑉 = { 𝑣 } ) → ( iEdg ‘ 𝐺 ) = ∅ ) |
| 11 | 2 | eqeq1i | ⊢ ( 𝐸 = ∅ ↔ ( Edg ‘ 𝐺 ) = ∅ ) |
| 12 | usgruhgr | ⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UHGraph ) | |
| 13 | uhgriedg0edg0 | ⊢ ( 𝐺 ∈ UHGraph → ( ( Edg ‘ 𝐺 ) = ∅ ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) | |
| 14 | 12 13 | syl | ⊢ ( 𝐺 ∈ USGraph → ( ( Edg ‘ 𝐺 ) = ∅ ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |
| 15 | 14 | adantr | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑉 = { 𝑣 } ) → ( ( Edg ‘ 𝐺 ) = ∅ ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |
| 16 | 11 15 | bitrid | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑉 = { 𝑣 } ) → ( 𝐸 = ∅ ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |
| 17 | 10 16 | mpbird | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑉 = { 𝑣 } ) → 𝐸 = ∅ ) |
| 18 | 17 | ex | ⊢ ( 𝐺 ∈ USGraph → ( 𝑉 = { 𝑣 } → 𝐸 = ∅ ) ) |
| 19 | 18 | exlimdv | ⊢ ( 𝐺 ∈ USGraph → ( ∃ 𝑣 𝑉 = { 𝑣 } → 𝐸 = ∅ ) ) |
| 20 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 21 | hash1snb | ⊢ ( 𝑉 ∈ V → ( ( ♯ ‘ 𝑉 ) = 1 ↔ ∃ 𝑣 𝑉 = { 𝑣 } ) ) | |
| 22 | 20 21 | mp1i | ⊢ ( 𝐺 ∈ USGraph → ( ( ♯ ‘ 𝑉 ) = 1 ↔ ∃ 𝑣 𝑉 = { 𝑣 } ) ) |
| 23 | 2 | fvexi | ⊢ 𝐸 ∈ V |
| 24 | hasheq0 | ⊢ ( 𝐸 ∈ V → ( ( ♯ ‘ 𝐸 ) = 0 ↔ 𝐸 = ∅ ) ) | |
| 25 | 23 24 | mp1i | ⊢ ( 𝐺 ∈ USGraph → ( ( ♯ ‘ 𝐸 ) = 0 ↔ 𝐸 = ∅ ) ) |
| 26 | 19 22 25 | 3imtr4d | ⊢ ( 𝐺 ∈ USGraph → ( ( ♯ ‘ 𝑉 ) = 1 → ( ♯ ‘ 𝐸 ) = 0 ) ) |
| 27 | 26 | imp | ⊢ ( ( 𝐺 ∈ USGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ) → ( ♯ ‘ 𝐸 ) = 0 ) |