This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of a (finite) simple graph with 1 vertex is 0. (Contributed by Alexander van der Vekens, 5-Jan-2018) (Revised by AV, 22-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fusgredgfi.v | |- V = ( Vtx ` G ) |
|
| fusgredgfi.e | |- E = ( Edg ` G ) |
||
| Assertion | usgr1v0e | |- ( ( G e. USGraph /\ ( # ` V ) = 1 ) -> ( # ` E ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fusgredgfi.v | |- V = ( Vtx ` G ) |
|
| 2 | fusgredgfi.e | |- E = ( Edg ` G ) |
|
| 3 | simpl | |- ( ( G e. USGraph /\ V = { v } ) -> G e. USGraph ) |
|
| 4 | vex | |- v e. _V |
|
| 5 | 1 | eqeq1i | |- ( V = { v } <-> ( Vtx ` G ) = { v } ) |
| 6 | 5 | biimpi | |- ( V = { v } -> ( Vtx ` G ) = { v } ) |
| 7 | 6 | adantl | |- ( ( G e. USGraph /\ V = { v } ) -> ( Vtx ` G ) = { v } ) |
| 8 | usgr1vr | |- ( ( v e. _V /\ ( Vtx ` G ) = { v } ) -> ( G e. USGraph -> ( iEdg ` G ) = (/) ) ) |
|
| 9 | 4 7 8 | sylancr | |- ( ( G e. USGraph /\ V = { v } ) -> ( G e. USGraph -> ( iEdg ` G ) = (/) ) ) |
| 10 | 3 9 | mpd | |- ( ( G e. USGraph /\ V = { v } ) -> ( iEdg ` G ) = (/) ) |
| 11 | 2 | eqeq1i | |- ( E = (/) <-> ( Edg ` G ) = (/) ) |
| 12 | usgruhgr | |- ( G e. USGraph -> G e. UHGraph ) |
|
| 13 | uhgriedg0edg0 | |- ( G e. UHGraph -> ( ( Edg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) |
|
| 14 | 12 13 | syl | |- ( G e. USGraph -> ( ( Edg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) |
| 15 | 14 | adantr | |- ( ( G e. USGraph /\ V = { v } ) -> ( ( Edg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) |
| 16 | 11 15 | bitrid | |- ( ( G e. USGraph /\ V = { v } ) -> ( E = (/) <-> ( iEdg ` G ) = (/) ) ) |
| 17 | 10 16 | mpbird | |- ( ( G e. USGraph /\ V = { v } ) -> E = (/) ) |
| 18 | 17 | ex | |- ( G e. USGraph -> ( V = { v } -> E = (/) ) ) |
| 19 | 18 | exlimdv | |- ( G e. USGraph -> ( E. v V = { v } -> E = (/) ) ) |
| 20 | 1 | fvexi | |- V e. _V |
| 21 | hash1snb | |- ( V e. _V -> ( ( # ` V ) = 1 <-> E. v V = { v } ) ) |
|
| 22 | 20 21 | mp1i | |- ( G e. USGraph -> ( ( # ` V ) = 1 <-> E. v V = { v } ) ) |
| 23 | 2 | fvexi | |- E e. _V |
| 24 | hasheq0 | |- ( E e. _V -> ( ( # ` E ) = 0 <-> E = (/) ) ) |
|
| 25 | 23 24 | mp1i | |- ( G e. USGraph -> ( ( # ` E ) = 0 <-> E = (/) ) ) |
| 26 | 19 22 25 | 3imtr4d | |- ( G e. USGraph -> ( ( # ` V ) = 1 -> ( # ` E ) = 0 ) ) |
| 27 | 26 | imp | |- ( ( G e. USGraph /\ ( # ` V ) = 1 ) -> ( # ` E ) = 0 ) |