This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Universal property of the Cartesian product considered as a categorical product in the category of sets. (Contributed by Jeff Madsen, 2-Sep-2009) (Revised by Mario Carneiro, 27-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upxp.1 | |- P = ( 1st |` ( B X. C ) ) |
|
| upxp.2 | |- Q = ( 2nd |` ( B X. C ) ) |
||
| Assertion | upxp | |- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> E! h ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upxp.1 | |- P = ( 1st |` ( B X. C ) ) |
|
| 2 | upxp.2 | |- Q = ( 2nd |` ( B X. C ) ) |
|
| 3 | mptexg | |- ( A e. D -> ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) e. _V ) |
|
| 4 | eueq | |- ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) e. _V <-> E! h h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) |
|
| 5 | 3 4 | sylib | |- ( A e. D -> E! h h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) |
| 6 | 5 | 3ad2ant1 | |- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> E! h h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) |
| 7 | ffn | |- ( h : A --> ( B X. C ) -> h Fn A ) |
|
| 8 | 7 | 3ad2ant1 | |- ( ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) -> h Fn A ) |
| 9 | 8 | adantl | |- ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) -> h Fn A ) |
| 10 | ffvelcdm | |- ( ( F : A --> B /\ x e. A ) -> ( F ` x ) e. B ) |
|
| 11 | ffvelcdm | |- ( ( G : A --> C /\ x e. A ) -> ( G ` x ) e. C ) |
|
| 12 | opelxpi | |- ( ( ( F ` x ) e. B /\ ( G ` x ) e. C ) -> <. ( F ` x ) , ( G ` x ) >. e. ( B X. C ) ) |
|
| 13 | 10 11 12 | syl2an | |- ( ( ( F : A --> B /\ x e. A ) /\ ( G : A --> C /\ x e. A ) ) -> <. ( F ` x ) , ( G ` x ) >. e. ( B X. C ) ) |
| 14 | 13 | anandirs | |- ( ( ( F : A --> B /\ G : A --> C ) /\ x e. A ) -> <. ( F ` x ) , ( G ` x ) >. e. ( B X. C ) ) |
| 15 | 14 | ralrimiva | |- ( ( F : A --> B /\ G : A --> C ) -> A. x e. A <. ( F ` x ) , ( G ` x ) >. e. ( B X. C ) ) |
| 16 | 15 | 3adant1 | |- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> A. x e. A <. ( F ` x ) , ( G ` x ) >. e. ( B X. C ) ) |
| 17 | eqid | |- ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) |
|
| 18 | 17 | fmpt | |- ( A. x e. A <. ( F ` x ) , ( G ` x ) >. e. ( B X. C ) <-> ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) : A --> ( B X. C ) ) |
| 19 | 16 18 | sylib | |- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) : A --> ( B X. C ) ) |
| 20 | 19 | ffnd | |- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) Fn A ) |
| 21 | 20 | adantr | |- ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) -> ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) Fn A ) |
| 22 | xpss | |- ( B X. C ) C_ ( _V X. _V ) |
|
| 23 | ffvelcdm | |- ( ( h : A --> ( B X. C ) /\ z e. A ) -> ( h ` z ) e. ( B X. C ) ) |
|
| 24 | 22 23 | sselid | |- ( ( h : A --> ( B X. C ) /\ z e. A ) -> ( h ` z ) e. ( _V X. _V ) ) |
| 25 | 24 | 3ad2antl1 | |- ( ( ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) /\ z e. A ) -> ( h ` z ) e. ( _V X. _V ) ) |
| 26 | 25 | adantll | |- ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( h ` z ) e. ( _V X. _V ) ) |
| 27 | fveq1 | |- ( F = ( P o. h ) -> ( F ` z ) = ( ( P o. h ) ` z ) ) |
|
| 28 | 1 | coeq1i | |- ( P o. h ) = ( ( 1st |` ( B X. C ) ) o. h ) |
| 29 | 28 | fveq1i | |- ( ( P o. h ) ` z ) = ( ( ( 1st |` ( B X. C ) ) o. h ) ` z ) |
| 30 | 27 29 | eqtrdi | |- ( F = ( P o. h ) -> ( F ` z ) = ( ( ( 1st |` ( B X. C ) ) o. h ) ` z ) ) |
| 31 | 30 | 3ad2ant2 | |- ( ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) -> ( F ` z ) = ( ( ( 1st |` ( B X. C ) ) o. h ) ` z ) ) |
| 32 | 31 | ad2antlr | |- ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( F ` z ) = ( ( ( 1st |` ( B X. C ) ) o. h ) ` z ) ) |
| 33 | simpr1 | |- ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) -> h : A --> ( B X. C ) ) |
|
| 34 | fvco3 | |- ( ( h : A --> ( B X. C ) /\ z e. A ) -> ( ( ( 1st |` ( B X. C ) ) o. h ) ` z ) = ( ( 1st |` ( B X. C ) ) ` ( h ` z ) ) ) |
|
| 35 | 33 34 | sylan | |- ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( ( ( 1st |` ( B X. C ) ) o. h ) ` z ) = ( ( 1st |` ( B X. C ) ) ` ( h ` z ) ) ) |
| 36 | 23 | 3ad2antl1 | |- ( ( ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) /\ z e. A ) -> ( h ` z ) e. ( B X. C ) ) |
| 37 | 36 | adantll | |- ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( h ` z ) e. ( B X. C ) ) |
| 38 | 37 | fvresd | |- ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( ( 1st |` ( B X. C ) ) ` ( h ` z ) ) = ( 1st ` ( h ` z ) ) ) |
| 39 | 32 35 38 | 3eqtrrd | |- ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( 1st ` ( h ` z ) ) = ( F ` z ) ) |
| 40 | fveq1 | |- ( G = ( Q o. h ) -> ( G ` z ) = ( ( Q o. h ) ` z ) ) |
|
| 41 | 2 | coeq1i | |- ( Q o. h ) = ( ( 2nd |` ( B X. C ) ) o. h ) |
| 42 | 41 | fveq1i | |- ( ( Q o. h ) ` z ) = ( ( ( 2nd |` ( B X. C ) ) o. h ) ` z ) |
| 43 | 40 42 | eqtrdi | |- ( G = ( Q o. h ) -> ( G ` z ) = ( ( ( 2nd |` ( B X. C ) ) o. h ) ` z ) ) |
| 44 | 43 | 3ad2ant3 | |- ( ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) -> ( G ` z ) = ( ( ( 2nd |` ( B X. C ) ) o. h ) ` z ) ) |
| 45 | 44 | ad2antlr | |- ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( G ` z ) = ( ( ( 2nd |` ( B X. C ) ) o. h ) ` z ) ) |
| 46 | fvco3 | |- ( ( h : A --> ( B X. C ) /\ z e. A ) -> ( ( ( 2nd |` ( B X. C ) ) o. h ) ` z ) = ( ( 2nd |` ( B X. C ) ) ` ( h ` z ) ) ) |
|
| 47 | 33 46 | sylan | |- ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( ( ( 2nd |` ( B X. C ) ) o. h ) ` z ) = ( ( 2nd |` ( B X. C ) ) ` ( h ` z ) ) ) |
| 48 | 37 | fvresd | |- ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( ( 2nd |` ( B X. C ) ) ` ( h ` z ) ) = ( 2nd ` ( h ` z ) ) ) |
| 49 | 45 47 48 | 3eqtrrd | |- ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( 2nd ` ( h ` z ) ) = ( G ` z ) ) |
| 50 | eqopi | |- ( ( ( h ` z ) e. ( _V X. _V ) /\ ( ( 1st ` ( h ` z ) ) = ( F ` z ) /\ ( 2nd ` ( h ` z ) ) = ( G ` z ) ) ) -> ( h ` z ) = <. ( F ` z ) , ( G ` z ) >. ) |
|
| 51 | 26 39 49 50 | syl12anc | |- ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( h ` z ) = <. ( F ` z ) , ( G ` z ) >. ) |
| 52 | fveq2 | |- ( x = z -> ( F ` x ) = ( F ` z ) ) |
|
| 53 | fveq2 | |- ( x = z -> ( G ` x ) = ( G ` z ) ) |
|
| 54 | 52 53 | opeq12d | |- ( x = z -> <. ( F ` x ) , ( G ` x ) >. = <. ( F ` z ) , ( G ` z ) >. ) |
| 55 | opex | |- <. ( F ` z ) , ( G ` z ) >. e. _V |
|
| 56 | 54 17 55 | fvmpt | |- ( z e. A -> ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` z ) = <. ( F ` z ) , ( G ` z ) >. ) |
| 57 | 56 | adantl | |- ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` z ) = <. ( F ` z ) , ( G ` z ) >. ) |
| 58 | 51 57 | eqtr4d | |- ( ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) /\ z e. A ) -> ( h ` z ) = ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` z ) ) |
| 59 | 9 21 58 | eqfnfvd | |- ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) -> h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) |
| 60 | 59 | ex | |- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> ( ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) -> h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) |
| 61 | ffn | |- ( F : A --> B -> F Fn A ) |
|
| 62 | 61 | 3ad2ant2 | |- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> F Fn A ) |
| 63 | fo1st | |- 1st : _V -onto-> _V |
|
| 64 | fofn | |- ( 1st : _V -onto-> _V -> 1st Fn _V ) |
|
| 65 | 63 64 | ax-mp | |- 1st Fn _V |
| 66 | ssv | |- ( B X. C ) C_ _V |
|
| 67 | fnssres | |- ( ( 1st Fn _V /\ ( B X. C ) C_ _V ) -> ( 1st |` ( B X. C ) ) Fn ( B X. C ) ) |
|
| 68 | 65 66 67 | mp2an | |- ( 1st |` ( B X. C ) ) Fn ( B X. C ) |
| 69 | 19 | frnd | |- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> ran ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) C_ ( B X. C ) ) |
| 70 | fnco | |- ( ( ( 1st |` ( B X. C ) ) Fn ( B X. C ) /\ ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) Fn A /\ ran ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) C_ ( B X. C ) ) -> ( ( 1st |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) Fn A ) |
|
| 71 | 68 20 69 70 | mp3an2i | |- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> ( ( 1st |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) Fn A ) |
| 72 | fvco3 | |- ( ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) : A --> ( B X. C ) /\ z e. A ) -> ( ( ( 1st |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ` z ) = ( ( 1st |` ( B X. C ) ) ` ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` z ) ) ) |
|
| 73 | 19 72 | sylan | |- ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> ( ( ( 1st |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ` z ) = ( ( 1st |` ( B X. C ) ) ` ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` z ) ) ) |
| 74 | 56 | adantl | |- ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` z ) = <. ( F ` z ) , ( G ` z ) >. ) |
| 75 | 74 | fveq2d | |- ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> ( ( 1st |` ( B X. C ) ) ` ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` z ) ) = ( ( 1st |` ( B X. C ) ) ` <. ( F ` z ) , ( G ` z ) >. ) ) |
| 76 | ffvelcdm | |- ( ( F : A --> B /\ z e. A ) -> ( F ` z ) e. B ) |
|
| 77 | ffvelcdm | |- ( ( G : A --> C /\ z e. A ) -> ( G ` z ) e. C ) |
|
| 78 | opelxpi | |- ( ( ( F ` z ) e. B /\ ( G ` z ) e. C ) -> <. ( F ` z ) , ( G ` z ) >. e. ( B X. C ) ) |
|
| 79 | 76 77 78 | syl2an | |- ( ( ( F : A --> B /\ z e. A ) /\ ( G : A --> C /\ z e. A ) ) -> <. ( F ` z ) , ( G ` z ) >. e. ( B X. C ) ) |
| 80 | 79 | anandirs | |- ( ( ( F : A --> B /\ G : A --> C ) /\ z e. A ) -> <. ( F ` z ) , ( G ` z ) >. e. ( B X. C ) ) |
| 81 | 80 | 3adantl1 | |- ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> <. ( F ` z ) , ( G ` z ) >. e. ( B X. C ) ) |
| 82 | 81 | fvresd | |- ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> ( ( 1st |` ( B X. C ) ) ` <. ( F ` z ) , ( G ` z ) >. ) = ( 1st ` <. ( F ` z ) , ( G ` z ) >. ) ) |
| 83 | fvex | |- ( F ` z ) e. _V |
|
| 84 | fvex | |- ( G ` z ) e. _V |
|
| 85 | 83 84 | op1st | |- ( 1st ` <. ( F ` z ) , ( G ` z ) >. ) = ( F ` z ) |
| 86 | 82 85 | eqtrdi | |- ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> ( ( 1st |` ( B X. C ) ) ` <. ( F ` z ) , ( G ` z ) >. ) = ( F ` z ) ) |
| 87 | 73 75 86 | 3eqtrrd | |- ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> ( F ` z ) = ( ( ( 1st |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ` z ) ) |
| 88 | 62 71 87 | eqfnfvd | |- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> F = ( ( 1st |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) |
| 89 | 1 | coeq1i | |- ( P o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) = ( ( 1st |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) |
| 90 | 88 89 | eqtr4di | |- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> F = ( P o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) |
| 91 | ffn | |- ( G : A --> C -> G Fn A ) |
|
| 92 | 91 | 3ad2ant3 | |- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> G Fn A ) |
| 93 | fo2nd | |- 2nd : _V -onto-> _V |
|
| 94 | fofn | |- ( 2nd : _V -onto-> _V -> 2nd Fn _V ) |
|
| 95 | 93 94 | ax-mp | |- 2nd Fn _V |
| 96 | fnssres | |- ( ( 2nd Fn _V /\ ( B X. C ) C_ _V ) -> ( 2nd |` ( B X. C ) ) Fn ( B X. C ) ) |
|
| 97 | 95 66 96 | mp2an | |- ( 2nd |` ( B X. C ) ) Fn ( B X. C ) |
| 98 | fnco | |- ( ( ( 2nd |` ( B X. C ) ) Fn ( B X. C ) /\ ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) Fn A /\ ran ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) C_ ( B X. C ) ) -> ( ( 2nd |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) Fn A ) |
|
| 99 | 97 20 69 98 | mp3an2i | |- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> ( ( 2nd |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) Fn A ) |
| 100 | fvco3 | |- ( ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) : A --> ( B X. C ) /\ z e. A ) -> ( ( ( 2nd |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ` z ) = ( ( 2nd |` ( B X. C ) ) ` ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` z ) ) ) |
|
| 101 | 19 100 | sylan | |- ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> ( ( ( 2nd |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ` z ) = ( ( 2nd |` ( B X. C ) ) ` ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` z ) ) ) |
| 102 | 74 | fveq2d | |- ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> ( ( 2nd |` ( B X. C ) ) ` ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ` z ) ) = ( ( 2nd |` ( B X. C ) ) ` <. ( F ` z ) , ( G ` z ) >. ) ) |
| 103 | 81 | fvresd | |- ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> ( ( 2nd |` ( B X. C ) ) ` <. ( F ` z ) , ( G ` z ) >. ) = ( 2nd ` <. ( F ` z ) , ( G ` z ) >. ) ) |
| 104 | 83 84 | op2nd | |- ( 2nd ` <. ( F ` z ) , ( G ` z ) >. ) = ( G ` z ) |
| 105 | 103 104 | eqtrdi | |- ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> ( ( 2nd |` ( B X. C ) ) ` <. ( F ` z ) , ( G ` z ) >. ) = ( G ` z ) ) |
| 106 | 101 102 105 | 3eqtrrd | |- ( ( ( A e. D /\ F : A --> B /\ G : A --> C ) /\ z e. A ) -> ( G ` z ) = ( ( ( 2nd |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ` z ) ) |
| 107 | 92 99 106 | eqfnfvd | |- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> G = ( ( 2nd |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) |
| 108 | 2 | coeq1i | |- ( Q o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) = ( ( 2nd |` ( B X. C ) ) o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) |
| 109 | 107 108 | eqtr4di | |- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> G = ( Q o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) |
| 110 | 19 90 109 | 3jca | |- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) : A --> ( B X. C ) /\ F = ( P o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) /\ G = ( Q o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) ) |
| 111 | feq1 | |- ( h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) -> ( h : A --> ( B X. C ) <-> ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) : A --> ( B X. C ) ) ) |
|
| 112 | coeq2 | |- ( h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) -> ( P o. h ) = ( P o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) |
|
| 113 | 112 | eqeq2d | |- ( h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) -> ( F = ( P o. h ) <-> F = ( P o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) ) |
| 114 | coeq2 | |- ( h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) -> ( Q o. h ) = ( Q o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) |
|
| 115 | 114 | eqeq2d | |- ( h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) -> ( G = ( Q o. h ) <-> G = ( Q o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) ) |
| 116 | 111 113 115 | 3anbi123d | |- ( h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) -> ( ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) <-> ( ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) : A --> ( B X. C ) /\ F = ( P o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) /\ G = ( Q o. ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) ) ) |
| 117 | 110 116 | syl5ibrcom | |- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> ( h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) -> ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) ) |
| 118 | 60 117 | impbid | |- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> ( ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) <-> h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) |
| 119 | 118 | eubidv | |- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> ( E! h ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) <-> E! h h = ( x e. A |-> <. ( F ` x ) , ( G ` x ) >. ) ) ) |
| 120 | 6 119 | mpbird | |- ( ( A e. D /\ F : A --> B /\ G : A --> C ) -> E! h ( h : A --> ( B X. C ) /\ F = ( P o. h ) /\ G = ( Q o. h ) ) ) |