This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of upgr1eop , using the general theorem gropeld to transform a theorem for an arbitrary representation of a graph into a theorem for a graph represented as ordered pair. This general approach causes some overhead, which makes the proof longer than necessary (see proof of upgr1eop ). (Contributed by AV, 11-Oct-2020) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | upgr1eopALT | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 〈 𝑉 , { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } 〉 ∈ UPGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝑔 ) | |
| 2 | simpllr | ⊢ ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) ) → 𝐴 ∈ 𝑋 ) | |
| 3 | simplrl | ⊢ ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) ) → 𝐵 ∈ 𝑉 ) | |
| 4 | eleq2 | ⊢ ( ( Vtx ‘ 𝑔 ) = 𝑉 → ( 𝐵 ∈ ( Vtx ‘ 𝑔 ) ↔ 𝐵 ∈ 𝑉 ) ) | |
| 5 | 4 | ad2antrl | ⊢ ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) ) → ( 𝐵 ∈ ( Vtx ‘ 𝑔 ) ↔ 𝐵 ∈ 𝑉 ) ) |
| 6 | 3 5 | mpbird | ⊢ ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) ) → 𝐵 ∈ ( Vtx ‘ 𝑔 ) ) |
| 7 | simplrr | ⊢ ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) ) → 𝐶 ∈ 𝑉 ) | |
| 8 | eleq2 | ⊢ ( ( Vtx ‘ 𝑔 ) = 𝑉 → ( 𝐶 ∈ ( Vtx ‘ 𝑔 ) ↔ 𝐶 ∈ 𝑉 ) ) | |
| 9 | 8 | ad2antrl | ⊢ ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) ) → ( 𝐶 ∈ ( Vtx ‘ 𝑔 ) ↔ 𝐶 ∈ 𝑉 ) ) |
| 10 | 7 9 | mpbird | ⊢ ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) ) → 𝐶 ∈ ( Vtx ‘ 𝑔 ) ) |
| 11 | simprr | ⊢ ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) ) → ( iEdg ‘ 𝑔 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) | |
| 12 | 1 2 6 10 11 | upgr1e | ⊢ ( ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) ∧ ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) ) → 𝑔 ∈ UPGraph ) |
| 13 | 12 | ex | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) → 𝑔 ∈ UPGraph ) ) |
| 14 | 13 | alrimiv | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ∀ 𝑔 ( ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) → 𝑔 ∈ UPGraph ) ) |
| 15 | simpll | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝑉 ∈ 𝑊 ) | |
| 16 | snex | ⊢ { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ∈ V | |
| 17 | 16 | a1i | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ∈ V ) |
| 18 | 14 15 17 | gropeld | ⊢ ( ( ( 𝑉 ∈ 𝑊 ∧ 𝐴 ∈ 𝑋 ) ∧ ( 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 〈 𝑉 , { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } 〉 ∈ UPGraph ) |