This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If any representation of a graph with vertices V and edges E is an element of an arbitrary class C , then the ordered pair <. V , E >. of the set of vertices and the set of edges (which is such a representation of a graph with vertices V and edges E ) is an element of this class C . (Contributed by AV, 11-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gropeld.g | ⊢ ( 𝜑 → ∀ 𝑔 ( ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = 𝐸 ) → 𝑔 ∈ 𝐶 ) ) | |
| gropeld.v | ⊢ ( 𝜑 → 𝑉 ∈ 𝑈 ) | ||
| gropeld.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑊 ) | ||
| Assertion | gropeld | ⊢ ( 𝜑 → 〈 𝑉 , 𝐸 〉 ∈ 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gropeld.g | ⊢ ( 𝜑 → ∀ 𝑔 ( ( ( Vtx ‘ 𝑔 ) = 𝑉 ∧ ( iEdg ‘ 𝑔 ) = 𝐸 ) → 𝑔 ∈ 𝐶 ) ) | |
| 2 | gropeld.v | ⊢ ( 𝜑 → 𝑉 ∈ 𝑈 ) | |
| 3 | gropeld.e | ⊢ ( 𝜑 → 𝐸 ∈ 𝑊 ) | |
| 4 | 1 2 3 | gropd | ⊢ ( 𝜑 → [ 〈 𝑉 , 𝐸 〉 / 𝑔 ] 𝑔 ∈ 𝐶 ) |
| 5 | sbcel1v | ⊢ ( [ 〈 𝑉 , 𝐸 〉 / 𝑔 ] 𝑔 ∈ 𝐶 ↔ 〈 𝑉 , 𝐸 〉 ∈ 𝐶 ) | |
| 6 | 4 5 | sylib | ⊢ ( 𝜑 → 〈 𝑉 , 𝐸 〉 ∈ 𝐶 ) |