This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A pseudograph with one edge. Such a graph is actually a simple pseudograph, see uspgr1e . (Contributed by Mario Carneiro, 12-Mar-2015) (Revised by AV, 16-Oct-2020) (Revised by AV, 21-Mar-2021) (Proof shortened by AV, 17-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgr1e.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| upgr1e.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| upgr1e.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | ||
| upgr1e.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | ||
| upgr1e.e | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) | ||
| Assertion | upgr1e | ⊢ ( 𝜑 → 𝐺 ∈ UPGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgr1e.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | upgr1e.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 3 | upgr1e.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) | |
| 4 | upgr1e.c | ⊢ ( 𝜑 → 𝐶 ∈ 𝑉 ) | |
| 5 | upgr1e.e | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) = { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) | |
| 6 | prex | ⊢ { 𝐵 , 𝐶 } ∈ V | |
| 7 | 6 | snid | ⊢ { 𝐵 , 𝐶 } ∈ { { 𝐵 , 𝐶 } } |
| 8 | 7 | a1i | ⊢ ( 𝜑 → { 𝐵 , 𝐶 } ∈ { { 𝐵 , 𝐶 } } ) |
| 9 | 2 8 | fsnd | ⊢ ( 𝜑 → { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } : { 𝐴 } ⟶ { { 𝐵 , 𝐶 } } ) |
| 10 | 3 4 | prssd | ⊢ ( 𝜑 → { 𝐵 , 𝐶 } ⊆ 𝑉 ) |
| 11 | 10 1 | sseqtrdi | ⊢ ( 𝜑 → { 𝐵 , 𝐶 } ⊆ ( Vtx ‘ 𝐺 ) ) |
| 12 | 6 | elpw | ⊢ ( { 𝐵 , 𝐶 } ∈ 𝒫 ( Vtx ‘ 𝐺 ) ↔ { 𝐵 , 𝐶 } ⊆ ( Vtx ‘ 𝐺 ) ) |
| 13 | 11 12 | sylibr | ⊢ ( 𝜑 → { 𝐵 , 𝐶 } ∈ 𝒫 ( Vtx ‘ 𝐺 ) ) |
| 14 | 13 3 | upgr1elem | ⊢ ( 𝜑 → { { 𝐵 , 𝐶 } } ⊆ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 15 | 9 14 | fssd | ⊢ ( 𝜑 → { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } : { 𝐴 } ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 16 | 15 | ffdmd | ⊢ ( 𝜑 → { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } : dom { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 17 | 5 | dmeqd | ⊢ ( 𝜑 → dom ( iEdg ‘ 𝐺 ) = dom { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ) |
| 18 | 5 17 | feq12d | ⊢ ( 𝜑 → ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ↔ { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } : dom { 〈 𝐴 , { 𝐵 , 𝐶 } 〉 } ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
| 19 | 16 18 | mpbird | ⊢ ( 𝜑 → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 20 | 1 | 1vgrex | ⊢ ( 𝐵 ∈ 𝑉 → 𝐺 ∈ V ) |
| 21 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 22 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 23 | 21 22 | isupgr | ⊢ ( 𝐺 ∈ V → ( 𝐺 ∈ UPGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
| 24 | 3 20 23 | 3syl | ⊢ ( 𝜑 → ( 𝐺 ∈ UPGraph ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐺 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
| 25 | 19 24 | mpbird | ⊢ ( 𝜑 → 𝐺 ∈ UPGraph ) |