This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate proof of upgr1eop , using the general theorem gropeld to transform a theorem for an arbitrary representation of a graph into a theorem for a graph represented as ordered pair. This general approach causes some overhead, which makes the proof longer than necessary (see proof of upgr1eop ). (Contributed by AV, 11-Oct-2020) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | upgr1eopALT | |- ( ( ( V e. W /\ A e. X ) /\ ( B e. V /\ C e. V ) ) -> <. V , { <. A , { B , C } >. } >. e. UPGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` g ) = ( Vtx ` g ) |
|
| 2 | simpllr | |- ( ( ( ( V e. W /\ A e. X ) /\ ( B e. V /\ C e. V ) ) /\ ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = { <. A , { B , C } >. } ) ) -> A e. X ) |
|
| 3 | simplrl | |- ( ( ( ( V e. W /\ A e. X ) /\ ( B e. V /\ C e. V ) ) /\ ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = { <. A , { B , C } >. } ) ) -> B e. V ) |
|
| 4 | eleq2 | |- ( ( Vtx ` g ) = V -> ( B e. ( Vtx ` g ) <-> B e. V ) ) |
|
| 5 | 4 | ad2antrl | |- ( ( ( ( V e. W /\ A e. X ) /\ ( B e. V /\ C e. V ) ) /\ ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = { <. A , { B , C } >. } ) ) -> ( B e. ( Vtx ` g ) <-> B e. V ) ) |
| 6 | 3 5 | mpbird | |- ( ( ( ( V e. W /\ A e. X ) /\ ( B e. V /\ C e. V ) ) /\ ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = { <. A , { B , C } >. } ) ) -> B e. ( Vtx ` g ) ) |
| 7 | simplrr | |- ( ( ( ( V e. W /\ A e. X ) /\ ( B e. V /\ C e. V ) ) /\ ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = { <. A , { B , C } >. } ) ) -> C e. V ) |
|
| 8 | eleq2 | |- ( ( Vtx ` g ) = V -> ( C e. ( Vtx ` g ) <-> C e. V ) ) |
|
| 9 | 8 | ad2antrl | |- ( ( ( ( V e. W /\ A e. X ) /\ ( B e. V /\ C e. V ) ) /\ ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = { <. A , { B , C } >. } ) ) -> ( C e. ( Vtx ` g ) <-> C e. V ) ) |
| 10 | 7 9 | mpbird | |- ( ( ( ( V e. W /\ A e. X ) /\ ( B e. V /\ C e. V ) ) /\ ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = { <. A , { B , C } >. } ) ) -> C e. ( Vtx ` g ) ) |
| 11 | simprr | |- ( ( ( ( V e. W /\ A e. X ) /\ ( B e. V /\ C e. V ) ) /\ ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = { <. A , { B , C } >. } ) ) -> ( iEdg ` g ) = { <. A , { B , C } >. } ) |
|
| 12 | 1 2 6 10 11 | upgr1e | |- ( ( ( ( V e. W /\ A e. X ) /\ ( B e. V /\ C e. V ) ) /\ ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = { <. A , { B , C } >. } ) ) -> g e. UPGraph ) |
| 13 | 12 | ex | |- ( ( ( V e. W /\ A e. X ) /\ ( B e. V /\ C e. V ) ) -> ( ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = { <. A , { B , C } >. } ) -> g e. UPGraph ) ) |
| 14 | 13 | alrimiv | |- ( ( ( V e. W /\ A e. X ) /\ ( B e. V /\ C e. V ) ) -> A. g ( ( ( Vtx ` g ) = V /\ ( iEdg ` g ) = { <. A , { B , C } >. } ) -> g e. UPGraph ) ) |
| 15 | simpll | |- ( ( ( V e. W /\ A e. X ) /\ ( B e. V /\ C e. V ) ) -> V e. W ) |
|
| 16 | snex | |- { <. A , { B , C } >. } e. _V |
|
| 17 | 16 | a1i | |- ( ( ( V e. W /\ A e. X ) /\ ( B e. V /\ C e. V ) ) -> { <. A , { B , C } >. } e. _V ) |
| 18 | 14 15 17 | gropeld | |- ( ( ( V e. W /\ A e. X ) /\ ( B e. V /\ C e. V ) ) -> <. V , { <. A , { B , C } >. } >. e. UPGraph ) |