This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The union U of two pseudographs G and H with the same vertex set V is a pseudograph with the vertex V and the union ( E u. F ) of the (indexed) edges. (Contributed by AV, 12-Oct-2020) (Revised by AV, 24-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgrun.g | ⊢ ( 𝜑 → 𝐺 ∈ UPGraph ) | |
| upgrun.h | ⊢ ( 𝜑 → 𝐻 ∈ UPGraph ) | ||
| upgrun.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | ||
| upgrun.f | ⊢ 𝐹 = ( iEdg ‘ 𝐻 ) | ||
| upgrun.vg | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | ||
| upgrun.vh | ⊢ ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 ) | ||
| upgrun.i | ⊢ ( 𝜑 → ( dom 𝐸 ∩ dom 𝐹 ) = ∅ ) | ||
| upgrun.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑊 ) | ||
| upgrun.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝑈 ) = 𝑉 ) | ||
| upgrun.un | ⊢ ( 𝜑 → ( iEdg ‘ 𝑈 ) = ( 𝐸 ∪ 𝐹 ) ) | ||
| Assertion | upgrun | ⊢ ( 𝜑 → 𝑈 ∈ UPGraph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgrun.g | ⊢ ( 𝜑 → 𝐺 ∈ UPGraph ) | |
| 2 | upgrun.h | ⊢ ( 𝜑 → 𝐻 ∈ UPGraph ) | |
| 3 | upgrun.e | ⊢ 𝐸 = ( iEdg ‘ 𝐺 ) | |
| 4 | upgrun.f | ⊢ 𝐹 = ( iEdg ‘ 𝐻 ) | |
| 5 | upgrun.vg | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 6 | upgrun.vh | ⊢ ( 𝜑 → ( Vtx ‘ 𝐻 ) = 𝑉 ) | |
| 7 | upgrun.i | ⊢ ( 𝜑 → ( dom 𝐸 ∩ dom 𝐹 ) = ∅ ) | |
| 8 | upgrun.u | ⊢ ( 𝜑 → 𝑈 ∈ 𝑊 ) | |
| 9 | upgrun.v | ⊢ ( 𝜑 → ( Vtx ‘ 𝑈 ) = 𝑉 ) | |
| 10 | upgrun.un | ⊢ ( 𝜑 → ( iEdg ‘ 𝑈 ) = ( 𝐸 ∪ 𝐹 ) ) | |
| 11 | 5 3 | upgrf | ⊢ ( 𝐺 ∈ UPGraph → 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 12 | 1 11 | syl | ⊢ ( 𝜑 → 𝐸 : dom 𝐸 ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 13 | eqid | ⊢ ( Vtx ‘ 𝐻 ) = ( Vtx ‘ 𝐻 ) | |
| 14 | 13 4 | upgrf | ⊢ ( 𝐻 ∈ UPGraph → 𝐹 : dom 𝐹 ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 15 | 2 14 | syl | ⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 16 | 6 | eqcomd | ⊢ ( 𝜑 → 𝑉 = ( Vtx ‘ 𝐻 ) ) |
| 17 | 16 | pweqd | ⊢ ( 𝜑 → 𝒫 𝑉 = 𝒫 ( Vtx ‘ 𝐻 ) ) |
| 18 | 17 | difeq1d | ⊢ ( 𝜑 → ( 𝒫 𝑉 ∖ { ∅ } ) = ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) ) |
| 19 | 18 | rabeqdv | ⊢ ( 𝜑 → { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } = { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 20 | 19 | feq3d | ⊢ ( 𝜑 → ( 𝐹 : dom 𝐹 ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ↔ 𝐹 : dom 𝐹 ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝐻 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
| 21 | 15 20 | mpbird | ⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 22 | 12 21 7 | fun2d | ⊢ ( 𝜑 → ( 𝐸 ∪ 𝐹 ) : ( dom 𝐸 ∪ dom 𝐹 ) ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 23 | 10 | dmeqd | ⊢ ( 𝜑 → dom ( iEdg ‘ 𝑈 ) = dom ( 𝐸 ∪ 𝐹 ) ) |
| 24 | dmun | ⊢ dom ( 𝐸 ∪ 𝐹 ) = ( dom 𝐸 ∪ dom 𝐹 ) | |
| 25 | 23 24 | eqtrdi | ⊢ ( 𝜑 → dom ( iEdg ‘ 𝑈 ) = ( dom 𝐸 ∪ dom 𝐹 ) ) |
| 26 | 9 | pweqd | ⊢ ( 𝜑 → 𝒫 ( Vtx ‘ 𝑈 ) = 𝒫 𝑉 ) |
| 27 | 26 | difeq1d | ⊢ ( 𝜑 → ( 𝒫 ( Vtx ‘ 𝑈 ) ∖ { ∅ } ) = ( 𝒫 𝑉 ∖ { ∅ } ) ) |
| 28 | 27 | rabeqdv | ⊢ ( 𝜑 → { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝑈 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } = { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 29 | 10 25 28 | feq123d | ⊢ ( 𝜑 → ( ( iEdg ‘ 𝑈 ) : dom ( iEdg ‘ 𝑈 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝑈 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ↔ ( 𝐸 ∪ 𝐹 ) : ( dom 𝐸 ∪ dom 𝐹 ) ⟶ { 𝑥 ∈ ( 𝒫 𝑉 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
| 30 | 22 29 | mpbird | ⊢ ( 𝜑 → ( iEdg ‘ 𝑈 ) : dom ( iEdg ‘ 𝑈 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝑈 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 31 | eqid | ⊢ ( Vtx ‘ 𝑈 ) = ( Vtx ‘ 𝑈 ) | |
| 32 | eqid | ⊢ ( iEdg ‘ 𝑈 ) = ( iEdg ‘ 𝑈 ) | |
| 33 | 31 32 | isupgr | ⊢ ( 𝑈 ∈ 𝑊 → ( 𝑈 ∈ UPGraph ↔ ( iEdg ‘ 𝑈 ) : dom ( iEdg ‘ 𝑈 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝑈 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
| 34 | 8 33 | syl | ⊢ ( 𝜑 → ( 𝑈 ∈ UPGraph ↔ ( iEdg ‘ 𝑈 ) : dom ( iEdg ‘ 𝑈 ) ⟶ { 𝑥 ∈ ( 𝒫 ( Vtx ‘ 𝑈 ) ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) ) |
| 35 | 30 34 | mpbird | ⊢ ( 𝜑 → 𝑈 ∈ UPGraph ) |