This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for upgr1e and uspgr1e . (Contributed by AV, 16-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | upgr1elem.s | ⊢ ( 𝜑 → { 𝐵 , 𝐶 } ∈ 𝑆 ) | |
| upgr1elem.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | ||
| Assertion | upgr1elem | ⊢ ( 𝜑 → { { 𝐵 , 𝐶 } } ⊆ { 𝑥 ∈ ( 𝑆 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgr1elem.s | ⊢ ( 𝜑 → { 𝐵 , 𝐶 } ∈ 𝑆 ) | |
| 2 | upgr1elem.b | ⊢ ( 𝜑 → 𝐵 ∈ 𝑊 ) | |
| 3 | fveq2 | ⊢ ( 𝑥 = { 𝐵 , 𝐶 } → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ { 𝐵 , 𝐶 } ) ) | |
| 4 | 3 | breq1d | ⊢ ( 𝑥 = { 𝐵 , 𝐶 } → ( ( ♯ ‘ 𝑥 ) ≤ 2 ↔ ( ♯ ‘ { 𝐵 , 𝐶 } ) ≤ 2 ) ) |
| 5 | prnzg | ⊢ ( 𝐵 ∈ 𝑊 → { 𝐵 , 𝐶 } ≠ ∅ ) | |
| 6 | 2 5 | syl | ⊢ ( 𝜑 → { 𝐵 , 𝐶 } ≠ ∅ ) |
| 7 | eldifsn | ⊢ ( { 𝐵 , 𝐶 } ∈ ( 𝑆 ∖ { ∅ } ) ↔ ( { 𝐵 , 𝐶 } ∈ 𝑆 ∧ { 𝐵 , 𝐶 } ≠ ∅ ) ) | |
| 8 | 1 6 7 | sylanbrc | ⊢ ( 𝜑 → { 𝐵 , 𝐶 } ∈ ( 𝑆 ∖ { ∅ } ) ) |
| 9 | hashprlei | ⊢ ( { 𝐵 , 𝐶 } ∈ Fin ∧ ( ♯ ‘ { 𝐵 , 𝐶 } ) ≤ 2 ) | |
| 10 | 9 | simpri | ⊢ ( ♯ ‘ { 𝐵 , 𝐶 } ) ≤ 2 |
| 11 | 10 | a1i | ⊢ ( 𝜑 → ( ♯ ‘ { 𝐵 , 𝐶 } ) ≤ 2 ) |
| 12 | 4 8 11 | elrabd | ⊢ ( 𝜑 → { 𝐵 , 𝐶 } ∈ { 𝑥 ∈ ( 𝑆 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |
| 13 | 12 | snssd | ⊢ ( 𝜑 → { { 𝐵 , 𝐶 } } ⊆ { 𝑥 ∈ ( 𝑆 ∖ { ∅ } ) ∣ ( ♯ ‘ 𝑥 ) ≤ 2 } ) |