This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is an isomorphism" (deduction form). (Contributed by Zhi Wang, 16-Sep-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isisod.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| isisod.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| isisod.o | ⊢ · = ( comp ‘ 𝐶 ) | ||
| isisod.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | ||
| isisod.1 | ⊢ 1 = ( Id ‘ 𝐶 ) | ||
| isisod.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| isisod.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| isisod.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | ||
| isisod.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | ||
| isisod.g | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) | ||
| isisod.gf | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ) | ||
| isisod.fg | ⊢ ( 𝜑 → ( 𝐹 ( 〈 𝑌 , 𝑋 〉 · 𝑌 ) 𝐺 ) = ( 1 ‘ 𝑌 ) ) | ||
| Assertion | isisod | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isisod.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | isisod.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | isisod.o | ⊢ · = ( comp ‘ 𝐶 ) | |
| 4 | isisod.i | ⊢ 𝐼 = ( Iso ‘ 𝐶 ) | |
| 5 | isisod.1 | ⊢ 1 = ( Id ‘ 𝐶 ) | |
| 6 | isisod.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 7 | isisod.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 8 | isisod.y | ⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) | |
| 9 | isisod.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐻 𝑌 ) ) | |
| 10 | isisod.g | ⊢ ( 𝜑 → 𝐺 ∈ ( 𝑌 𝐻 𝑋 ) ) | |
| 11 | isisod.gf | ⊢ ( 𝜑 → ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ) | |
| 12 | isisod.fg | ⊢ ( 𝜑 → ( 𝐹 ( 〈 𝑌 , 𝑋 〉 · 𝑌 ) 𝐺 ) = ( 1 ‘ 𝑌 ) ) | |
| 13 | simpr | ⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → 𝑔 = 𝐺 ) | |
| 14 | 13 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) ) |
| 15 | 14 | eqeq1d | ⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ↔ ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ) ) |
| 16 | 13 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → ( 𝐹 ( 〈 𝑌 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 𝐹 ( 〈 𝑌 , 𝑋 〉 · 𝑌 ) 𝐺 ) ) |
| 17 | 16 | eqeq1d | ⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → ( ( 𝐹 ( 〈 𝑌 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ↔ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 · 𝑌 ) 𝐺 ) = ( 1 ‘ 𝑌 ) ) ) |
| 18 | 15 17 | anbi12d | ⊢ ( ( 𝜑 ∧ 𝑔 = 𝐺 ) → ( ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ↔ ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 · 𝑌 ) 𝐺 ) = ( 1 ‘ 𝑌 ) ) ) ) |
| 19 | 10 18 | rspcedv | ⊢ ( 𝜑 → ( ( ( 𝐺 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 · 𝑌 ) 𝐺 ) = ( 1 ‘ 𝑌 ) ) → ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) |
| 20 | 11 12 19 | mp2and | ⊢ ( 𝜑 → ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) |
| 21 | 3 | oveqi | ⊢ ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) = ( 〈 𝑋 , 𝑌 〉 ( comp ‘ 𝐶 ) 𝑋 ) |
| 22 | 3 | oveqi | ⊢ ( 〈 𝑌 , 𝑋 〉 · 𝑌 ) = ( 〈 𝑌 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑌 ) |
| 23 | 1 2 6 4 7 8 9 5 21 22 | dfiso2 | ⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ↔ ∃ 𝑔 ∈ ( 𝑌 𝐻 𝑋 ) ( ( 𝑔 ( 〈 𝑋 , 𝑌 〉 · 𝑋 ) 𝐹 ) = ( 1 ‘ 𝑋 ) ∧ ( 𝐹 ( 〈 𝑌 , 𝑋 〉 · 𝑌 ) 𝑔 ) = ( 1 ‘ 𝑌 ) ) ) ) |
| 24 | 20 23 | mpbird | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 𝐼 𝑌 ) ) |