This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a full functor (in fact, a full embedding) is a section, then the sets of universal objects are equal. (Contributed by Zhi Wang, 17-Nov-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | uobeq2.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| uobeq2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| uobeq2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) | ||
| uobeq2.g | ⊢ ( 𝜑 → ( 𝐾 ∘func 𝐹 ) = 𝐺 ) | ||
| uobeq2.y | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐾 ) ‘ 𝑋 ) = 𝑌 ) | ||
| uobeq2.q | ⊢ 𝑄 = ( CatCat ‘ 𝑈 ) | ||
| uobeq2.s | ⊢ 𝑆 = ( Sect ‘ 𝑄 ) | ||
| uobeq2.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 Full 𝐸 ) ) | ||
| uobeq2.1 | ⊢ ( 𝜑 → 𝐾 ∈ dom ( 𝐷 𝑆 𝐸 ) ) | ||
| Assertion | uobeq2 | ⊢ ( 𝜑 → dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) = dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uobeq2.b | ⊢ 𝐵 = ( Base ‘ 𝐷 ) | |
| 2 | uobeq2.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 3 | uobeq2.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) | |
| 4 | uobeq2.g | ⊢ ( 𝜑 → ( 𝐾 ∘func 𝐹 ) = 𝐺 ) | |
| 5 | uobeq2.y | ⊢ ( 𝜑 → ( ( 1st ‘ 𝐾 ) ‘ 𝑋 ) = 𝑌 ) | |
| 6 | uobeq2.q | ⊢ 𝑄 = ( CatCat ‘ 𝑈 ) | |
| 7 | uobeq2.s | ⊢ 𝑆 = ( Sect ‘ 𝑄 ) | |
| 8 | uobeq2.k | ⊢ ( 𝜑 → 𝐾 ∈ ( 𝐷 Full 𝐸 ) ) | |
| 9 | uobeq2.1 | ⊢ ( 𝜑 → 𝐾 ∈ dom ( 𝐷 𝑆 𝐸 ) ) | |
| 10 | eldmg | ⊢ ( 𝐾 ∈ dom ( 𝐷 𝑆 𝐸 ) → ( 𝐾 ∈ dom ( 𝐷 𝑆 𝐸 ) ↔ ∃ 𝑙 𝐾 ( 𝐷 𝑆 𝐸 ) 𝑙 ) ) | |
| 11 | 10 | ibi | ⊢ ( 𝐾 ∈ dom ( 𝐷 𝑆 𝐸 ) → ∃ 𝑙 𝐾 ( 𝐷 𝑆 𝐸 ) 𝑙 ) |
| 12 | 9 11 | syl | ⊢ ( 𝜑 → ∃ 𝑙 𝐾 ( 𝐷 𝑆 𝐸 ) 𝑙 ) |
| 13 | 2 | adantr | ⊢ ( ( 𝜑 ∧ 𝐾 ( 𝐷 𝑆 𝐸 ) 𝑙 ) → 𝑋 ∈ 𝐵 ) |
| 14 | 3 | adantr | ⊢ ( ( 𝜑 ∧ 𝐾 ( 𝐷 𝑆 𝐸 ) 𝑙 ) → 𝐹 ∈ ( 𝐶 Func 𝐷 ) ) |
| 15 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝐾 ( 𝐷 𝑆 𝐸 ) 𝑙 ) → ( 𝐾 ∘func 𝐹 ) = 𝐺 ) |
| 16 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝐾 ( 𝐷 𝑆 𝐸 ) 𝑙 ) → ( ( 1st ‘ 𝐾 ) ‘ 𝑋 ) = 𝑌 ) |
| 17 | eqid | ⊢ ( idfunc ‘ 𝐷 ) = ( idfunc ‘ 𝐷 ) | |
| 18 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝐾 ( 𝐷 𝑆 𝐸 ) 𝑙 ) → 𝐾 ∈ ( 𝐷 Full 𝐸 ) ) |
| 19 | eqid | ⊢ ( Hom ‘ 𝑄 ) = ( Hom ‘ 𝑄 ) | |
| 20 | 6 19 17 7 | catcsect | ⊢ ( 𝐾 ( 𝐷 𝑆 𝐸 ) 𝑙 ↔ ( ( 𝐾 ∈ ( 𝐷 ( Hom ‘ 𝑄 ) 𝐸 ) ∧ 𝑙 ∈ ( 𝐸 ( Hom ‘ 𝑄 ) 𝐷 ) ) ∧ ( 𝑙 ∘func 𝐾 ) = ( idfunc ‘ 𝐷 ) ) ) |
| 21 | 20 | simprbi | ⊢ ( 𝐾 ( 𝐷 𝑆 𝐸 ) 𝑙 → ( 𝑙 ∘func 𝐾 ) = ( idfunc ‘ 𝐷 ) ) |
| 22 | 21 | adantl | ⊢ ( ( 𝜑 ∧ 𝐾 ( 𝐷 𝑆 𝐸 ) 𝑙 ) → ( 𝑙 ∘func 𝐾 ) = ( idfunc ‘ 𝐷 ) ) |
| 23 | 20 | simplbi | ⊢ ( 𝐾 ( 𝐷 𝑆 𝐸 ) 𝑙 → ( 𝐾 ∈ ( 𝐷 ( Hom ‘ 𝑄 ) 𝐸 ) ∧ 𝑙 ∈ ( 𝐸 ( Hom ‘ 𝑄 ) 𝐷 ) ) ) |
| 24 | 23 | simprd | ⊢ ( 𝐾 ( 𝐷 𝑆 𝐸 ) 𝑙 → 𝑙 ∈ ( 𝐸 ( Hom ‘ 𝑄 ) 𝐷 ) ) |
| 25 | 6 19 24 | elcatchom | ⊢ ( 𝐾 ( 𝐷 𝑆 𝐸 ) 𝑙 → 𝑙 ∈ ( 𝐸 Func 𝐷 ) ) |
| 26 | 25 | adantl | ⊢ ( ( 𝜑 ∧ 𝐾 ( 𝐷 𝑆 𝐸 ) 𝑙 ) → 𝑙 ∈ ( 𝐸 Func 𝐷 ) ) |
| 27 | 1 13 14 15 16 17 18 22 26 | uobeq | ⊢ ( ( 𝜑 ∧ 𝐾 ( 𝐷 𝑆 𝐸 ) 𝑙 ) → dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) = dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ) |
| 28 | 12 27 | exlimddv | ⊢ ( 𝜑 → dom ( 𝐹 ( 𝐶 UP 𝐷 ) 𝑋 ) = dom ( 𝐺 ( 𝐶 UP 𝐸 ) 𝑌 ) ) |